dc.creatorFranco D.V.
dc.creatorJardim W.F.
dc.creatorBoodts J.F.C.
dc.creatorDa Silva L.M.
dc.date2008
dc.date2015-06-30T19:16:53Z
dc.date2015-11-26T14:41:16Z
dc.date2015-06-30T19:16:53Z
dc.date2015-11-26T14:41:16Z
dc.date.accessioned2018-03-28T21:48:06Z
dc.date.available2018-03-28T21:48:06Z
dc.identifier
dc.identifierClean - Soil, Air, Water. , v. 36, n. 1, p. 34 - 44, 2008.
dc.identifier18630650
dc.identifier10.1002/clen.200700080
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-38849193358&partnerID=40&md5=179bbf26b7036cf00af1e5fbaa958515
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105568
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105568
dc.identifier2-s2.0-38849193358
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250774
dc.descriptionPerspectives, advances and environmental aspects concerning electrochemical ozone production applied to water purification are presented and discussed in relation to the conventional corona process (silent electric discharge). Ozone generated using a laboratory-made electrochemical reactor was applied for the discoloration/degradation of dyes used in the Brazilian textile industry and for degradation of endocrine disruptors. A constant ozone load of 0.35 ± 0.02 g/h was used throughout. The study, concerning color removal from dye solutions, revealed that total discoloration is rapidly achieved. The degradation rate of the textile dyes evaluated by TOC is little affected by the dye composition and considerably influenced by the pH and ozonation time. Analysis of the COD/TOC-ratio indicates that ozonation increases oxidation feasibility of the organic matter (dye by-products) when compared to the original compounds. Ozonation of mixed aqueous solutions containing different endocrine disruptors revealed these compounds are totally degraded with a very high removal rate. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description36
dc.description1
dc.description34
dc.description44
dc.descriptionBaird, C., (2004) Environmental Chemistry, , 3th ed, W. H. Freeman and Company, New York
dc.descriptionGogate, P., Pandit, A.B., hybrid methods (2004) Adv. Environ. Res, 8 (3-4), pp. 553-597. , A review of imperative technologies for wastewater treatment II
dc.descriptionPontius, F.W., (1990) Water Quality and Treatment, , American Water Works Association, McGraw-Hill, New York
dc.descriptionDa Silva, L.M., Santana, M.H.P., Boodts, J.F.C., Electrochemistry and green chemical processes: Electrochemical ozone production (2003) Quim. Nova, 26 (6), pp. 880-888
dc.descriptionDa Silva, L.M., Jardim, W.F., Trends and Strategies of Ozone Application in Environmental Problems (2006) Quim. Nova, 29 (2), pp. 310-317
dc.descriptionDa Silva, L.M., de Faria, L.A., Boodts, J.F.C., Green processes for environmental application Electrochemical ozone production (2001) Pure Appl. Chem, 73 (12), pp. 1871-1884
dc.descriptionScott, K., (1995) Electrochemical Processes for Clean Technology, , Hartnolls, Cornwall, UK
dc.description(1999) Alternative Disinfectants and Oxidants Guidance Manual, , EPA, Office of Water, US Environmental Protection Agency, Washington, D.C
dc.descriptionMasten, S.J.S., Davies, H.R., The use of ozonation to degrade organic contaminants in wastewaters (1994) Environ. Sci. Technol, 28 (4), pp. 181-185
dc.descriptionLanglais, B., Reckhow, D.A., Brink, D.R., (1991) Ozone in Water Treatment: Application and Engineering, , CRC, Boca Raton
dc.descriptionEckentelder Jr., W.W., (1989) Industrial Water Pollution Control, , 2nd ed, McGraw-Hill, New York
dc.descriptionMarco, A., Esplugas, S., Saum, G., How and why combine chemical and biological processes for wastewater treatment (1997) Wat. Sci. Technol, 35 (3), pp. 321-325
dc.descriptionAnastas, P., Williamson, T., (1998) Green Chemistry, Theory and Practice, , Oxford University Press, Oxford
dc.descriptionHoigné, J., (1988) The Chemistry of Ozone in Process Technologies for Water Treatment, , Plenum-Press, New York
dc.descriptionDiaper, E.W.J., (1972) Ozone in Water and Wastewater Treatment, p. 145. , Ed: F. L. Evans, Ann Arbor Science
dc.descriptionSzpyrkowicz, L., Juzzolino, C., Kaul, S.N., A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent (2001) Wat. Res, 35 (9), pp. 2129-2136
dc.descriptionMeric, S., Kaptan, D., Ölmez, T., Colour and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process (2004) Chemosphere, 54 (3), pp. 435-441
dc.descriptionChurchley, J.H., Ozone for dye waste colour removal: Four years experience at Leek STW (1998) Ozone Sci. Eng, 20 (2), pp. 111-120
dc.descriptionShu, H.Y., Huang, C.R., Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation processes (1995) Chemosphere, 31 (8), pp. 3813-3825
dc.descriptionArslan, I., Balcioglu, I.A., Tuhkanen, T., Bahnemann, D.W., H2O2/UV-C and Fe2/ H2O2/UV-C vs. TiO2/UV-A treatment for reactive dye wastewater (2000) J. Environ. Eng, 126 (3), pp. 903-910
dc.descriptionTorrades, F., Montaño, J.G., Hortal, J.A.G., Domènech, X., Peral, J., Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions (2004) Solar Energy, 77 (5), pp. 573-581
dc.descriptionMeriç, S., Selçuk, H., Belgiorno, V., Acute toxicity removal in textile finishing wastewater by Fenton's oxidation, ozone and coagulation-flocculation processes (2005) Wat. Res, 39 (6), pp. 1147-1153
dc.descriptionKonsowa, A.H., Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor (2003) Desalination, 158 (1), pp. 233-240
dc.descriptionvon Gunten, U., Ozonation of drinking water: Part I. Oxidation kinetics and product formation (2003) Wat. Res, 37 (3), pp. 1443-1467
dc.descriptionU. von Gunten, Ozonation. of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Wat Res. 2003, 37 (3), 1469-1487Yao, C.C.D., Haag, W.R., Rate constants for direct reactions of ozone with several drinking water contaminants (1991) Wat. Res, 25 (7), pp. 761-773
dc.descriptionDeborde, M., Rabonau, S., Dughet, J.-P., Legube, B., Kinetics of Aqueous Ozone-laduced Oxidation ofSome Endocrine Disruptors (2005) Environ. Sci. Technol, 39 (16), pp. 6086-6092
dc.descriptionMckenzie, K.S., Sarr, A.B., Mayura, K., Bailey, R.H., Miller, D.R., Rogers, T.D., Norred, W.P., Phillips, T.D., Oxidative Degradation and Detoxification of Mycotoxins Using a Novel Source of Ozone (1997) Food Chem. Toxicol, 35 (5), pp. 807-820
dc.descriptionHsu, Y.C., Chen, J.T., Yang, H.C., Chen, J.H., Decolorization of dyes using ozone in a gas-induced reactor (2001) AIJChE J, 47 (1), pp. 169-176
dc.descriptionStucki, S., Baumann, H., Christen, H., Kötz, R.J., Performance of a pressurized electrochemical ozone generator (1987) J. Appl. Electrochem, 17 (3), pp. 773-778
dc.descriptionStucki, S., Theis, G., Kötz, R., Devantay, H., Christen, H.J., In situ production of ozone in water using a membrel electrolyzer (1985) J. Electrochem. Soc, 132 (2), pp. 367-371
dc.descriptionHoigné, J., (1982) Handbook of Ozone Technology and Applications, p. 341. , Eds: R. G. Rice, A. Netzer, Ann Arbor Science
dc.descriptionN. Zoubov, M. Pourbaix, In Atlas of Electrochemical Equilibria in Aqueous Solutions (Ed: M. Pourbaix), NACE International 1974, p. 540Benbelkacem, H., Debellefontaine, H., Modeling of a gas-liquid reactor in batch conditions. Study of the intermediate regime when part of the reaction occurs within the film and part within the bulk (2003) Chem. Eng. Proc, 3 (42), pp. 723-732
dc.descriptionH. Benbelkacem, H. Cano, S. Mathe, H. Debellefontaine, Maleic acid ozonation: reactor modeling and rate constants determination, Ozone Sci. Eng. 2003, (1) 25, 13-24M. T. Gao, M. Hirata, H. Takanashi, T. Hano, Ozone mass transfer in a new gas-liquid contactor-Karman contactor, Sep. Purif. Technol. 2005, (3) 42, 145-149Koide, K., Kato, S., Tanaka, Y., Kubota, H., Bubbles Generated from Porous Plate (1968) J. Chem. Eng.Japan, 1 (1), pp. 51-56
dc.descriptionL. M. Da Silva, D. V. Franco, J. C. Forti, W. F. Jardim, J. F. C. Boodts, Characterization of a laboratory electrochemical ozonation system and its application in advanced oxidation processes, J. Appl. Electrochem. 2006, (3) 36, 523-530Suarasana, I., Mudurab, M., Chirab, R., Andreia, G., Munceleanua, I., Morara, R., A novel type ozonizer for wastewater treatment (2005) J. Electrostat, 63 (2), pp. 831-836
dc.descriptionMartinez, P., Brandvold, D.K., Laboratory and field measurements of Nox produced from corona discharge (1996) Atmospher. Environ, 30 (24), pp. 4177-4182
dc.descriptionSuarasan, I., Ghizdavu, L., Ghizdavu, I., Budu, S., Dascalescu, L., Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids (2002) J. Electrostat, 54 (4), pp. 207-214
dc.descriptionWendt, H., Kreysa, G., (1999) Electrochemical Engineering: Science and technology in Chemistry and Other Industries, , Springer-Verlag, Berlin
dc.descriptionFoller, P.C., Tobias, C.W., The Anodic Evolution of Ozone (1982) J. Electrochem. Soc, 129 (3), pp. 506-515
dc.descriptionFoller, P.C., Kelsall, G.H., Ozone generation via the electrolysis of fluoboric acid using glass carbon anodes and air depolarized cathodes (1993) J. Appl. Electrochem, 23 (4), pp. 996-1010
dc.descriptionFoller, P., Goodwin, M.L., The Electrochemical Generation of High Concentration Ozone for Small-Scale Applications (1984) Ozone: Sci. Eng, 6 (2), pp. 29-36
dc.descriptionSundmacher, K., Rihko-Struckmann, L.K., Galvita, V., Solid electrolyte membrane reactors: Status and trends (2005) Catal. Today, 104 (5), pp. 185-199
dc.descriptionHan, S.-D., Kim, J.D., Singh, K.C., Chaudhary, R.S., Electrochemical generation of ozone using solid polymer electrolyte-State of the art (2004) Indian J. Chem. A, 43, pp. 1599-1614
dc.descriptionMcIntyre, J., 100 Years of Industrial Electrochemistry (2002) J. Electrochem. Soc, 149 (10), pp. S79-S83
dc.descriptionCouper, A.M., Pletcher, D., Walsh, F.C., Electrode Materials for Electrosynthesis (1990) Chem. Rev, 90 (5), pp. 837-865
dc.descriptionPark, S.-G., Stable Ozone Generation by Using Boron-Doped Diamond Electrodes (2003) Russ. J. Electrochem, 39 (3), pp. 321-322
dc.descriptionKatoh, M., Nishiki, Y., Nakamatsu, S., Polymer electrolyte-type electrochemical ozone generator with an oxygen cathode (1994) J. Appl. Electrochem, 24 (3), pp. 489-494
dc.descriptionArihara, K., Terashima, C., Fujishima, A., Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes (2007) J. Electrochem. Soc, 154 (4), pp. E71-E75
dc.descriptionOnda, K., Ohba, T., Kusunobi, H., Takezawa, S., Sunakawa, D., Araki, T., Improving Characteristics of Ozone Water Production with Multilayer electrodes and Operating Conditions in a Polymer Electrolyte Water Electrolysis Cell (2005) J. Electrochem. Soc, 152 (10), pp. D177-D183
dc.descriptionWang, Y.-H., Cheng, S., Chan, K.-Y., Synthesis of ozone from air via a polymer-electrolyte-membrane cell with a doped tin oxide anode (2006) Green Chem, 8 (3), pp. 568-572
dc.descriptionDa Silva, L.M., de Faria, L.A., Boodts, J.F.C., Electrochemical ozone production: Influence of the supporting electrolyte on kinetics and current efficiency (2003) Electrochim. Acta, 48 (6), pp. 699-709
dc.descriptionD. V. Franco, L. M. Da Silva, W. F. Jardim, J. F. C. Boodts, Influence of the Electrolyte Composition on the Kinetics ofthe Oxygen Evolution Reaction and Ozone Production Processes, J. Braz. Chem. Soc. 2006, (4) 17, 746-757Da Silva, L.M., Franco, D.V., de Faria, L.A., Boodts, J.F.C., Surface, kinetics and electrocatalytic properties ofTi/(IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production (2004) Electrochim. Acta, 49 (3), pp. 3977-3988
dc.descriptionSelcuk, H., Sarikaya, H.Z., Bekbolet, M., Anderson, M.A., Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalyric system (2006) Chemosphere, 62 (3), pp. 715-721
dc.descriptionSelcuk, H., Anderson, M.A., Effect of pH, charge separation and oxygen concentration in photoelectrocatalytic systems: Active chlorine production and chlorate formation (2005) Desalination, 176 (2), pp. 219-227
dc.descriptionPotapova, G.F., Shestakova, O.V., Defining Specifications for Concentrated Ozone Production on type SU-1 Modules (1995) Russ. J. Electrochem, 31 (7), pp. 670-673
dc.descriptionBabak, A.A., Fateev, V.N., Amadelli, R., Potapova, G.F., Ozone Electrosynthesis in an Electrolyzer with Solid Polymer Electrolyte (1994) Russ. J. Electrochem, 30 (6), pp. 739-741
dc.descriptionTatapudi, P., Fenton, J.M., Synthesis of Ozone in a Proton Exchange Membrane Electrochemical Reactor (1993) J. Electrochem. Soc, 140 (12), pp. 3527-3530
dc.descriptionTicianelli, E.A., Camara, G.A., Santos, G.R.A., Eletrocatálise das Reações de Oxidação de Hidrogênio e de Redução de Oxigênio (2003) Quim. Nova, 28 (4), pp. 664-669
dc.descriptionPerry, M.L., Fuller, T.F., A Historical Perspective of Fuel Cell Technology in the 20th Century (2002) J. Electrochem. Soc, 149 (7), pp. S59-S67
dc.description(1989) Standard Methods for the Examination of Water and Wastewater, , American Public Health Association, 17th ed, APHA, Washington, D.C
dc.descriptionHao, O.J., Kim, H., Chiang, P.C., Decolorization of Wastewater (2000) Crit. Rev. Environ. Sci. Technol, 30 (4), pp. 449-505
dc.descriptionWhitlow, J.E., Roth, J.A., Heterogeneous ozonation kinetics of pollutants in wastewater (1988) Environ. Progress, 1 (7), pp. 52-57
dc.languageen
dc.publisher
dc.relationClean - Soil, Air, Water
dc.rightsfechado
dc.sourceScopus
dc.titleElectrochemical Ozone Production As An Environmentally Friendly Technology For Water Treatment
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución