Artículos de revistas
Evaluation Of Pervaporation Process For Recovering A Key Orange Juice Flavour Compound: Modeling And Simulation
Registro en:
9780444532275
Computer Aided Chemical Engineering. , v. 25, n. , p. 175 - 180, 2008.
15707946
10.1016/S1570-7946(08)80034-X
2-s2.0-52749092649
Autor
Araujo W.A.
Alvarez M.E.T.
Moraes E.B.
Wolf-Maciel M.R.
Institución
Resumen
During fruit juice processing, charaeteristie flavour components are usually lost as consequence of the heating process. Membrane separation processes are considered as a promising alternative for this issue, e.g., in orange juice industry, an important agro industrial chain in Brazilian economy. Ethyl butyrate (EB) is one of the fresh orange flavour key contributors. Pervaporation is an attractive technology for processing thermal sensitive compounds. This membrane process is based on a selective transport of a liquid feed mixture through a selective polymeric or ceramic membrane. In this work, the pervaporation performance was simulated for recovering EB from a diluted binary aqueous mixture using a PDMS (poly(dimethylsiloxane)) hydrophobic membrane. Innovative preliminary process results obtained using predicted POMS (poly(octylmethylsiloxane)) properties are also presented. A FORTRAN simulator named PERVAP based on an essentially predictive mathematical model was applied in this work. © 2008 Elsevier B.V. All rights reserved. 25
175 180 Alvarez, M.E.T., (2005) PhD Thesis, , State University of Campinas, Campinas, SP, Brazil Alvarez, M.E.T., Moraes, E.B., Araujo, W.A., Maciel Filho, R., Wolf-Maciel, M.R., (2008) J. Appl. Polym. Sci., 107 (4), pp. 2256=2265 Araujo, W.A., Alvarez, M.E.T., Wolf-Maciel, M.R., (2007) Proceedings of European Congress of Chemical Engineering (ECCE6), , Copenhagen Baker, R., (2004) Membrane Technology and Applications, , John Wiley & Sons Ltd., UK Baudot, M., Marin, M., (1997) Trans IchemE., 75, pp. 117-147 Bicerano, J., (2002) Prediction of polymer properties, p. 784. , Marcel Dekker Inc., New York Burgard, D.R., (1995) ACS Symp. Ser., 596, pp. 21-32 Djojoputro, H., Ismadji, S., (2005) J. Chem. Eng. Data., 50, pp. 727-731 Haward, R.N., (1970) J. Macromol. Sci. Rev. Macromol. Chem., C4 (2), pp. 191-242 Hong, S.U., (1995) Ind. Eng. Chem Res., 34, pp. 2536-2544 Magnussen, T., (1981) Ind. Eng. Chem. Process Des. Dev., 20, pp. 331-339 Neves, M.F., Jank, M.S., (2006) São Paulo: PENSA-Agribusiness Intelligence Center, Report Nisperos-Carriedo, M.O., Shaw, P.E., (1990) J. Agric. Food Chem., 38 (4), pp. 1048-1052 Pereira, C.C., Ribeiro, A.C., Nobrega, R., Borges, C.P., (2006) J. Membr. Sci., 274, pp. 1-23 Sampranpiboon, P., Jiraratananon, R., Feng, X., Huang, R.Y.M., (2000) J. Membr. Sci., 174, pp. 55-65 Van Krevelen, D.W., (1992) Computacional modeling of polymers, p. 55. , Marcel Dekker, New York Vrentas, J.S., Duda, J.L., (1977) J. Polym. Sci. Part B: Polym. Phys., 15, pp. 403-416 Vrentas, J.S., Duda, J.L., (1979) AICHE J., 25 (1), pp. 1-24 Willians, M.L., Landel, R.F., Ferry, J.D., (1955) J. Am. Chem. Soc., 77, pp. 3701-3707 Zhang, S., Drioli, E., (1995) Sep. Sci. Technol., 30 (1), pp. 1-31