Artículos de revistas
Low-density Three-dimensional Foam Using Self-reinforced Hybrid Two-dimensional Atomic Layers
Registro en:
Nature Communications. Nature Publishing Group, v. 5, n. , p. - , 2014.
20411723
10.1038/ncomms5541
2-s2.0-84905222974
Autor
Vinod S.
Tiwary C.S.
Da Silva Autreto P.A.
Taha-Tijerina J.
Ozden S.
Chipara A.C.
Vajtai R.
Galvao D.S.
Narayanan T.N.
Ajayan P.M.
Institución
Resumen
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure. © 2014 Macmillan Publishers Limited. 5
Reinfried, M., Hybrid foams-A new approach for multifunctional applications (2011) Adv. Eng. Mater., 13, pp. 1031-1036 Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J., Processing routes to macroporous ceramics: A review (2006) Journal of the American Ceramic Society, 89 (6), pp. 1771-1789. , DOI 10.1111/j.1551-2916.2006.01044.x Reddy, E.S., Schmitz, G.J., Superconducting foams (2002) Supercond. Sci. Technol., 15, pp. L21-L24 Banhart, J., Metal foams: Production and stability (2006) Advanced Engineering Materials, 8 (9), pp. 781-794. , DOI 10.1002/adem.200600071 Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams (2001) Progress in Materials Science, 46 (6), pp. 559-632. , DOI 10.1016/S0079-6425(00)00002-5, PII S0079642500000025 Svagan, A.J., Samir, M.A.S.A., Berglund, L.A., Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils (2008) Adv. Mater., 20, pp. 1263-1269 Cao, X., Preparation of novel 3D graphene networks for supercapacitor applications (2011) Small, 7, pp. 3163-3168 Cao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M., Materials science: Super-compressible foamlike carbon nanotube films (2005) Science, 310 (5752), pp. 1307-1310. , DOI 10.1126/science.1118957 Butler, S.Z., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7, pp. 2898-2926 Zhou, W., Wang, Z.L., (2011) Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices, , Springer Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (30), pp. 10451-10453. , DOI 10.1073/pnas.0502848102 Keller, S.W., Kim, H.-N., Mallouk, T.E., Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: Toward molecular "beaker" epitaxy (1994) Journal of the American Chemical Society, 116 (19), pp. 8817-8818 Fendler, J.H., Self-assembled nanostructured materials (1996) Chemistry of Materials, 8 (8), pp. 1616-1624 Jones, M.R., Mirkin, C.A., Materials science: Self-assembly gets new direction (2012) Nature, 491, pp. 42-43 Zhang, X., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources (2011) J. Mater. Chem., 21, pp. 6494-6497 Xu, Y., Sheng, K., Li, C., Shi, G., Self-assembled graphene hydrogel via a onestep hydrothermal process (2010) ACS Nano, 4, pp. 4324-4330 Sudeep, P.M., Covalently interconnected three-dimensional graphene oxide solids (2013) ACS Nano, 7, pp. 7034-7040 Yan, Z., Three-dimensional metal-graphene-nanotube multifunctional hybrid materials (2013) ACS Nano, 7, pp. 58-64 Lu, X., Macroporous foam of reduced graphene oxides prepared by lyophilization (2012) Mater. Res. Bull., 47, pp. 4335-4339 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669. , DOI 10.1126/science.1102896 Geim, A.K., Novoselov, K.S., The rise of graphene (2007) Nature Materials, 6 (3), pp. 183-191. , DOI 10.1038/nmat1849, PII NMAT1849 Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: A review of graphene (2010) Chem. Rev., 110, pp. 132-145 Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Ruoff, R.S., Graphene-based composite materials (2006) Nature, 442 (7100), pp. 282-286. , DOI 10.1038/nature04969, PII NATURE04969 Han, Z., Ammonia solution strengthened three-dimensional macro-porous graphene aerogel (2013) Nanoscale, 5, pp. 5462-5467 Gao, G., Artificially stacked atomic layers: Toward new van der waals solids (2012) Nano Lett., 12, pp. 3518-3525 Britnell, L., Field-effect tunneling transistor based on vertical graphene heterostructures (2012) Science, 335, pp. 947-950 Rafiee, M.A., Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites (2013) Adv. Funct. Mater., 23, pp. 5624-5630 Liu, Z., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes (2013) Nat. Nanotechnol., 8, pp. 119-124 Peng, Q., Zamiri, A.R., Ji, W., De, S., Elastic properties of hybrid graphene/boron nitride monolayer (2012) Acta Mech., 223, pp. 2591-2596 Pacile, D., Meyer, J.C., Girit, C.O., Zettl, A., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes (2008) Appl. Phys. Lett., 92, pp. 133107-1331073 Pakdel, A., Zhi, C., Bando, Y., Nakayama, T., Golberg, D., Boron nitride nanosheet coatings with controllable water repellency (2011) ACS Nano, 5, pp. 6507-6515 Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H., Boron nitride as a lubricant additive (1999) Wear, 232 (2), pp. 199-206. , DOI 10.1016/S0043-1648(99)00146-5, PII S0043164899001465 Taha-Tijerina, J., Electrically insulating thermal nano-oils using 2D fillers (2012) ACS Nano, 6, pp. 1214-1220 Song, L., Large scale growth and characterization of atomic hexagonal boron nitride layers (2010) Nano Lett., 10, pp. 3209-3215 Nag, A., Graphene analogues of BN: Novel synthesis and properties (2010) ACS Nano, 4, pp. 1539-1544 Neto, A.H.C., Novoselov, K., Two-dimensional crystals: Beyond graphene (2011) Mater. Exp., 1, pp. 10-17 Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., ReaxFF: A reactive force field for hydrocarbons (2001) J. Phys. Chem. A, 105, pp. 9396-9409 Paci, J.T., Belytschko, T., Schatz, G.C., Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide (2007) J. Phys. Chem. C, 111, pp. 18099-18111 Grantab, R., Shenoy, V.B., Ruoff, R.S., Anomalous strength characteristics of tilt grain boundaries in graphene (2010) Science, 330, pp. 946-948 Perim, E., Autreto, P.A.S., Paupitz, R., Galvao, D.S., Dynamical aspects of the unzipping of multiwalled boron nitride nanotubes (2013) Phys. Chem. Chem. Phys., 15, p. 19147 Marcano, D.C., Improved synthesis of graphene oxide (2010) ACS Nano, 4, pp. 4806-4814 Coleman, J.N., Two-dimensional nanosheets produced by liquid exfoliation of layered materials (2011) Science, 331, pp. 568-571 Mortier, W.J., Ghosh, S.K., Shankar, S., Electronegativity-equalization method for the calculation of atomic charges in molecules (1986) J. Am. Chem. Soc., 108, pp. 4315-4320 Plimpton, S., Fast parallel algorithms for short-range molecular dynamics (1995) J. Comput. Phys., 117, pp. 1-19