dc.creatorVinod S.
dc.creatorTiwary C.S.
dc.creatorDa Silva Autreto P.A.
dc.creatorTaha-Tijerina J.
dc.creatorOzden S.
dc.creatorChipara A.C.
dc.creatorVajtai R.
dc.creatorGalvao D.S.
dc.creatorNarayanan T.N.
dc.creatorAjayan P.M.
dc.date2014
dc.date2015-06-25T17:55:37Z
dc.date2015-11-26T14:40:04Z
dc.date2015-06-25T17:55:37Z
dc.date2015-11-26T14:40:04Z
dc.date.accessioned2018-03-28T21:46:09Z
dc.date.available2018-03-28T21:46:09Z
dc.identifier
dc.identifierNature Communications. Nature Publishing Group, v. 5, n. , p. - , 2014.
dc.identifier20411723
dc.identifier10.1038/ncomms5541
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84905222974&partnerID=40&md5=800b7981d656164d373683bd80832daa
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86875
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86875
dc.identifier2-s2.0-84905222974
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250261
dc.descriptionLow-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure. © 2014 Macmillan Publishers Limited.
dc.description5
dc.description
dc.description
dc.description
dc.descriptionReinfried, M., Hybrid foams-A new approach for multifunctional applications (2011) Adv. Eng. Mater., 13, pp. 1031-1036
dc.descriptionStudart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J., Processing routes to macroporous ceramics: A review (2006) Journal of the American Ceramic Society, 89 (6), pp. 1771-1789. , DOI 10.1111/j.1551-2916.2006.01044.x
dc.descriptionReddy, E.S., Schmitz, G.J., Superconducting foams (2002) Supercond. Sci. Technol., 15, pp. L21-L24
dc.descriptionBanhart, J., Metal foams: Production and stability (2006) Advanced Engineering Materials, 8 (9), pp. 781-794. , DOI 10.1002/adem.200600071
dc.descriptionBanhart, J., Manufacture, characterisation and application of cellular metals and metal foams (2001) Progress in Materials Science, 46 (6), pp. 559-632. , DOI 10.1016/S0079-6425(00)00002-5, PII S0079642500000025
dc.descriptionSvagan, A.J., Samir, M.A.S.A., Berglund, L.A., Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils (2008) Adv. Mater., 20, pp. 1263-1269
dc.descriptionCao, X., Preparation of novel 3D graphene networks for supercapacitor applications (2011) Small, 7, pp. 3163-3168
dc.descriptionCao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M., Materials science: Super-compressible foamlike carbon nanotube films (2005) Science, 310 (5752), pp. 1307-1310. , DOI 10.1126/science.1118957
dc.descriptionButler, S.Z., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7, pp. 2898-2926
dc.descriptionZhou, W., Wang, Z.L., (2011) Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices, , Springer
dc.descriptionNovoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (30), pp. 10451-10453. , DOI 10.1073/pnas.0502848102
dc.descriptionKeller, S.W., Kim, H.-N., Mallouk, T.E., Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: Toward molecular "beaker" epitaxy (1994) Journal of the American Chemical Society, 116 (19), pp. 8817-8818
dc.descriptionFendler, J.H., Self-assembled nanostructured materials (1996) Chemistry of Materials, 8 (8), pp. 1616-1624
dc.descriptionJones, M.R., Mirkin, C.A., Materials science: Self-assembly gets new direction (2012) Nature, 491, pp. 42-43
dc.descriptionZhang, X., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources (2011) J. Mater. Chem., 21, pp. 6494-6497
dc.descriptionXu, Y., Sheng, K., Li, C., Shi, G., Self-assembled graphene hydrogel via a onestep hydrothermal process (2010) ACS Nano, 4, pp. 4324-4330
dc.descriptionSudeep, P.M., Covalently interconnected three-dimensional graphene oxide solids (2013) ACS Nano, 7, pp. 7034-7040
dc.descriptionYan, Z., Three-dimensional metal-graphene-nanotube multifunctional hybrid materials (2013) ACS Nano, 7, pp. 58-64
dc.descriptionLu, X., Macroporous foam of reduced graphene oxides prepared by lyophilization (2012) Mater. Res. Bull., 47, pp. 4335-4339
dc.descriptionNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669. , DOI 10.1126/science.1102896
dc.descriptionGeim, A.K., Novoselov, K.S., The rise of graphene (2007) Nature Materials, 6 (3), pp. 183-191. , DOI 10.1038/nmat1849, PII NMAT1849
dc.descriptionAllen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: A review of graphene (2010) Chem. Rev., 110, pp. 132-145
dc.descriptionStankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Ruoff, R.S., Graphene-based composite materials (2006) Nature, 442 (7100), pp. 282-286. , DOI 10.1038/nature04969, PII NATURE04969
dc.descriptionHan, Z., Ammonia solution strengthened three-dimensional macro-porous graphene aerogel (2013) Nanoscale, 5, pp. 5462-5467
dc.descriptionGao, G., Artificially stacked atomic layers: Toward new van der waals solids (2012) Nano Lett., 12, pp. 3518-3525
dc.descriptionBritnell, L., Field-effect tunneling transistor based on vertical graphene heterostructures (2012) Science, 335, pp. 947-950
dc.descriptionRafiee, M.A., Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites (2013) Adv. Funct. Mater., 23, pp. 5624-5630
dc.descriptionLiu, Z., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes (2013) Nat. Nanotechnol., 8, pp. 119-124
dc.descriptionPeng, Q., Zamiri, A.R., Ji, W., De, S., Elastic properties of hybrid graphene/boron nitride monolayer (2012) Acta Mech., 223, pp. 2591-2596
dc.descriptionPacile, D., Meyer, J.C., Girit, C.O., Zettl, A., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes (2008) Appl. Phys. Lett., 92, pp. 133107-1331073
dc.descriptionPakdel, A., Zhi, C., Bando, Y., Nakayama, T., Golberg, D., Boron nitride nanosheet coatings with controllable water repellency (2011) ACS Nano, 5, pp. 6507-6515
dc.descriptionKimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H., Boron nitride as a lubricant additive (1999) Wear, 232 (2), pp. 199-206. , DOI 10.1016/S0043-1648(99)00146-5, PII S0043164899001465
dc.descriptionTaha-Tijerina, J., Electrically insulating thermal nano-oils using 2D fillers (2012) ACS Nano, 6, pp. 1214-1220
dc.descriptionSong, L., Large scale growth and characterization of atomic hexagonal boron nitride layers (2010) Nano Lett., 10, pp. 3209-3215
dc.descriptionNag, A., Graphene analogues of BN: Novel synthesis and properties (2010) ACS Nano, 4, pp. 1539-1544
dc.descriptionNeto, A.H.C., Novoselov, K., Two-dimensional crystals: Beyond graphene (2011) Mater. Exp., 1, pp. 10-17
dc.descriptionVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., ReaxFF: A reactive force field for hydrocarbons (2001) J. Phys. Chem. A, 105, pp. 9396-9409
dc.descriptionPaci, J.T., Belytschko, T., Schatz, G.C., Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide (2007) J. Phys. Chem. C, 111, pp. 18099-18111
dc.descriptionGrantab, R., Shenoy, V.B., Ruoff, R.S., Anomalous strength characteristics of tilt grain boundaries in graphene (2010) Science, 330, pp. 946-948
dc.descriptionPerim, E., Autreto, P.A.S., Paupitz, R., Galvao, D.S., Dynamical aspects of the unzipping of multiwalled boron nitride nanotubes (2013) Phys. Chem. Chem. Phys., 15, p. 19147
dc.descriptionMarcano, D.C., Improved synthesis of graphene oxide (2010) ACS Nano, 4, pp. 4806-4814
dc.descriptionColeman, J.N., Two-dimensional nanosheets produced by liquid exfoliation of layered materials (2011) Science, 331, pp. 568-571
dc.descriptionMortier, W.J., Ghosh, S.K., Shankar, S., Electronegativity-equalization method for the calculation of atomic charges in molecules (1986) J. Am. Chem. Soc., 108, pp. 4315-4320
dc.descriptionPlimpton, S., Fast parallel algorithms for short-range molecular dynamics (1995) J. Comput. Phys., 117, pp. 1-19
dc.languageen
dc.publisherNature Publishing Group
dc.relationNature Communications
dc.rightsaberto
dc.sourceScopus
dc.titleLow-density Three-dimensional Foam Using Self-reinforced Hybrid Two-dimensional Atomic Layers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución