dc.creator | Vinod S. | |
dc.creator | Tiwary C.S. | |
dc.creator | Da Silva Autreto P.A. | |
dc.creator | Taha-Tijerina J. | |
dc.creator | Ozden S. | |
dc.creator | Chipara A.C. | |
dc.creator | Vajtai R. | |
dc.creator | Galvao D.S. | |
dc.creator | Narayanan T.N. | |
dc.creator | Ajayan P.M. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:55:37Z | |
dc.date | 2015-11-26T14:40:04Z | |
dc.date | 2015-06-25T17:55:37Z | |
dc.date | 2015-11-26T14:40:04Z | |
dc.date.accessioned | 2018-03-28T21:46:09Z | |
dc.date.available | 2018-03-28T21:46:09Z | |
dc.identifier | | |
dc.identifier | Nature Communications. Nature Publishing Group, v. 5, n. , p. - , 2014. | |
dc.identifier | 20411723 | |
dc.identifier | 10.1038/ncomms5541 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84905222974&partnerID=40&md5=800b7981d656164d373683bd80832daa | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86875 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86875 | |
dc.identifier | 2-s2.0-84905222974 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1250261 | |
dc.description | Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure. © 2014 Macmillan Publishers Limited. | |
dc.description | 5 | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.description | Reinfried, M., Hybrid foams-A new approach for multifunctional applications (2011) Adv. Eng. Mater., 13, pp. 1031-1036 | |
dc.description | Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J., Processing routes to macroporous ceramics: A review (2006) Journal of the American Ceramic Society, 89 (6), pp. 1771-1789. , DOI 10.1111/j.1551-2916.2006.01044.x | |
dc.description | Reddy, E.S., Schmitz, G.J., Superconducting foams (2002) Supercond. Sci. Technol., 15, pp. L21-L24 | |
dc.description | Banhart, J., Metal foams: Production and stability (2006) Advanced Engineering Materials, 8 (9), pp. 781-794. , DOI 10.1002/adem.200600071 | |
dc.description | Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams (2001) Progress in Materials Science, 46 (6), pp. 559-632. , DOI 10.1016/S0079-6425(00)00002-5, PII S0079642500000025 | |
dc.description | Svagan, A.J., Samir, M.A.S.A., Berglund, L.A., Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils (2008) Adv. Mater., 20, pp. 1263-1269 | |
dc.description | Cao, X., Preparation of novel 3D graphene networks for supercapacitor applications (2011) Small, 7, pp. 3163-3168 | |
dc.description | Cao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M., Materials science: Super-compressible foamlike carbon nanotube films (2005) Science, 310 (5752), pp. 1307-1310. , DOI 10.1126/science.1118957 | |
dc.description | Butler, S.Z., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7, pp. 2898-2926 | |
dc.description | Zhou, W., Wang, Z.L., (2011) Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices, , Springer | |
dc.description | Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (30), pp. 10451-10453. , DOI 10.1073/pnas.0502848102 | |
dc.description | Keller, S.W., Kim, H.-N., Mallouk, T.E., Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: Toward molecular "beaker" epitaxy (1994) Journal of the American Chemical Society, 116 (19), pp. 8817-8818 | |
dc.description | Fendler, J.H., Self-assembled nanostructured materials (1996) Chemistry of Materials, 8 (8), pp. 1616-1624 | |
dc.description | Jones, M.R., Mirkin, C.A., Materials science: Self-assembly gets new direction (2012) Nature, 491, pp. 42-43 | |
dc.description | Zhang, X., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources (2011) J. Mater. Chem., 21, pp. 6494-6497 | |
dc.description | Xu, Y., Sheng, K., Li, C., Shi, G., Self-assembled graphene hydrogel via a onestep hydrothermal process (2010) ACS Nano, 4, pp. 4324-4330 | |
dc.description | Sudeep, P.M., Covalently interconnected three-dimensional graphene oxide solids (2013) ACS Nano, 7, pp. 7034-7040 | |
dc.description | Yan, Z., Three-dimensional metal-graphene-nanotube multifunctional hybrid materials (2013) ACS Nano, 7, pp. 58-64 | |
dc.description | Lu, X., Macroporous foam of reduced graphene oxides prepared by lyophilization (2012) Mater. Res. Bull., 47, pp. 4335-4339 | |
dc.description | Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669. , DOI 10.1126/science.1102896 | |
dc.description | Geim, A.K., Novoselov, K.S., The rise of graphene (2007) Nature Materials, 6 (3), pp. 183-191. , DOI 10.1038/nmat1849, PII NMAT1849 | |
dc.description | Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: A review of graphene (2010) Chem. Rev., 110, pp. 132-145 | |
dc.description | Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Ruoff, R.S., Graphene-based composite materials (2006) Nature, 442 (7100), pp. 282-286. , DOI 10.1038/nature04969, PII NATURE04969 | |
dc.description | Han, Z., Ammonia solution strengthened three-dimensional macro-porous graphene aerogel (2013) Nanoscale, 5, pp. 5462-5467 | |
dc.description | Gao, G., Artificially stacked atomic layers: Toward new van der waals solids (2012) Nano Lett., 12, pp. 3518-3525 | |
dc.description | Britnell, L., Field-effect tunneling transistor based on vertical graphene heterostructures (2012) Science, 335, pp. 947-950 | |
dc.description | Rafiee, M.A., Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites (2013) Adv. Funct. Mater., 23, pp. 5624-5630 | |
dc.description | Liu, Z., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes (2013) Nat. Nanotechnol., 8, pp. 119-124 | |
dc.description | Peng, Q., Zamiri, A.R., Ji, W., De, S., Elastic properties of hybrid graphene/boron nitride monolayer (2012) Acta Mech., 223, pp. 2591-2596 | |
dc.description | Pacile, D., Meyer, J.C., Girit, C.O., Zettl, A., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes (2008) Appl. Phys. Lett., 92, pp. 133107-1331073 | |
dc.description | Pakdel, A., Zhi, C., Bando, Y., Nakayama, T., Golberg, D., Boron nitride nanosheet coatings with controllable water repellency (2011) ACS Nano, 5, pp. 6507-6515 | |
dc.description | Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H., Boron nitride as a lubricant additive (1999) Wear, 232 (2), pp. 199-206. , DOI 10.1016/S0043-1648(99)00146-5, PII S0043164899001465 | |
dc.description | Taha-Tijerina, J., Electrically insulating thermal nano-oils using 2D fillers (2012) ACS Nano, 6, pp. 1214-1220 | |
dc.description | Song, L., Large scale growth and characterization of atomic hexagonal boron nitride layers (2010) Nano Lett., 10, pp. 3209-3215 | |
dc.description | Nag, A., Graphene analogues of BN: Novel synthesis and properties (2010) ACS Nano, 4, pp. 1539-1544 | |
dc.description | Neto, A.H.C., Novoselov, K., Two-dimensional crystals: Beyond graphene (2011) Mater. Exp., 1, pp. 10-17 | |
dc.description | Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., ReaxFF: A reactive force field for hydrocarbons (2001) J. Phys. Chem. A, 105, pp. 9396-9409 | |
dc.description | Paci, J.T., Belytschko, T., Schatz, G.C., Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide (2007) J. Phys. Chem. C, 111, pp. 18099-18111 | |
dc.description | Grantab, R., Shenoy, V.B., Ruoff, R.S., Anomalous strength characteristics of tilt grain boundaries in graphene (2010) Science, 330, pp. 946-948 | |
dc.description | Perim, E., Autreto, P.A.S., Paupitz, R., Galvao, D.S., Dynamical aspects of the unzipping of multiwalled boron nitride nanotubes (2013) Phys. Chem. Chem. Phys., 15, p. 19147 | |
dc.description | Marcano, D.C., Improved synthesis of graphene oxide (2010) ACS Nano, 4, pp. 4806-4814 | |
dc.description | Coleman, J.N., Two-dimensional nanosheets produced by liquid exfoliation of layered materials (2011) Science, 331, pp. 568-571 | |
dc.description | Mortier, W.J., Ghosh, S.K., Shankar, S., Electronegativity-equalization method for the calculation of atomic charges in molecules (1986) J. Am. Chem. Soc., 108, pp. 4315-4320 | |
dc.description | Plimpton, S., Fast parallel algorithms for short-range molecular dynamics (1995) J. Comput. Phys., 117, pp. 1-19 | |
dc.language | en | |
dc.publisher | Nature Publishing Group | |
dc.relation | Nature Communications | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Low-density Three-dimensional Foam Using Self-reinforced Hybrid Two-dimensional Atomic Layers | |
dc.type | Artículos de revistas | |