Artículos de revistas
Influence Of The Temperature On The Structure Of An Amorphous Ni 46ti 54 Alloy Produced By Mechanical Alloying
Registro en:
European Physical Journal B. , v. 64, n. 2, p. 201 - 209, 2008.
14346028
10.1140/epjb/e2008-00312-9
2-s2.0-52349100684
Autor
Gasperini A.A.M.
MacHado K.D.
Buchner S.
De Lima J.C.
Grandi T.A.
Institución
Resumen
The evolution of the local atomic order of an amorphous Ni 46Ti 54 alloy produced by mechanical alloying as a function of temperature was studied by synchrotron X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. XRD measurements at several temperatures (25 °C, 350 °C, 412 °C, 430 °C, 450 °C and 515 °C) were performed and analyzed using the reverse Monte Carlo (RMC) simulations method or the Rietveld refinement procedure. The experimental total structure factor for samples at 25 °C and 350 °C, which are amorphous in nature, were simulated by using the RMC method, and the local structures of the alloy at both temperatures were determined, indicating a decrease in its density as the temperature increases. At 412 °C, the XRD pattern shows a partially crystalline sample, indicating that the crystallization process is in progress. At 430 °C, 450 °C and 515 °C, the XRD measurements indicate the presence of two crystalline phases, NiTi and NiTi 2, whose structural parameters (lattice parameters, coherently diffracting domains (CDD) sizes, microstrains and relative amount of phases) were determined using the Rietveld refinement procedure. DSC measurements at different heating rates furnished the crystallization temperature, enthalpy and activation energy of the crystallization process, and these values are similar to those found in other amorphous alloys of the Ni-Ti system. They also showed the existence of a second exothermic process, which was related to diffusive processes in the crystalline phases, which could be associated with the changes in the CDD sizes happening from 450 °C to 515 °C. © 2008 Springer-Verlag. 64 2 201 209 Duerig, T., Pelton, A., Stöckel, D., (1999) Mat. Sci. Eng. A, 273, p. 149 Otsuka, K., Shimizu, K., (1986) Int. Met. Rev., 31, p. 93 Shabalovskaya, S.A., (1996) Bio-Med. Mater. Eng., 6, p. 267 Melton, K.N., Mercier, O., (1979) Acta Metall., 27, p. 137 Oshida, Y., Sachdeva, R., Miyazaki, S., Fukuyo, S., (1990) Mater. Sci. Forum, 56, p. 705 Yokoyama, K., Ogawa, T., Asaoka, K., Sakai, J., Nagumo, M., (2003) Mat. Sci. Eng. A, 360, p. 153 Lipscomb, I.P., Nokes, L.D.M., (1996) The Application of Shape Memory Alloys in Medicine, , Mechanical Engineering Publications Limited Suffold, UK Desroches, R., McCormick, J., Delemont, M., (2004) J. Struct. Eng., 130, p. 38 Dolce, M., (2001) Int. J. Mec. Sci., 43, p. 2631 Buschow, K.H.J., (1983) J. Phys. F, 13, p. 563 Gasperini, A.A.M., MacHado, K.D., De Lima, J.C., Grandi, T.A., (2006) Chem. Phys. Lett., 430, p. 108 Suryanarayana, C., (2001) Prog. Mat. Sci., 46, p. 1 McGreevy, R.L., Pusztai, L., (1988) Mol. Simul., 1, p. 359 McGreevy, R.L., (1995) Nuc. Inst.Met. Phys. Res. A, 354, p. 1 McGreevy, R.L., Howe, M.A., Wicks, J.D., (1993) RMCA Version 3, , http://www.studsvik.uu.se McGreevy, R.L., (2001) J. Phys.: Condens. Matter, 13, p. 877 Rietveld, H.M., (1969) J. Appl. Cryst., 2, p. 65 Faber, T.E., Ziman, J.M., (1965) Philos. Mag., 11, p. 153 Wagner, C.N.J., (1972) Liquid Metals, , Marcel Dekker New York MacHado, K.D., Jóvári, P., De Lima, J.C., Gasperini, A.A.M., Souza, S.M., Maurmann, C.E., Delaplane, R.G., Wannberg, A., (2005) J. Phys.: Condens. Matter, 17, p. 1703 MacHado, K.D., De Lima, J.C., Campos, C.E.M., Grandi, T.A., Gasperini, A.A.M., (2004) Chem. Phys. Lett., 384, p. 386 Iparraguirre, E.W., Sietsma, J., Thijsse, B.J., (1993) J. Non-Cryst. Solids, 156, p. 969 Bionducci, M., Navarra, G., Bellissent, R., Concas, G., Congiu, F., (1999) J. Non-Cryst. Solids, 250, p. 605 Jóvári, P., Pusztai, L., (2001) Phys. Rev. B, 64, p. 14205 Gereben, O., Jóvári, P., Temleitner, L., Pusztai, L., (2007) J. Optoelec, Adv. Mat., 9, p. 3021 Gereben, O., Pusztai, L., (1994) Phys. Rev. B, 50, p. 14136 Hausleitner, C., Hafner, J., (1992) Phys. Rev. B, 45, p. 128 Fukunaga, T., Watanabe, N., Suzuki, K., (1984) J. Non-Cryst. Solids, 61, p. 343 Bimbault, L., Badawi, K.F., Goudeau, Ph., Branger, V., Durand, N., (1996) Thin Solid Films, 275, p. 40 Kissinger, H.E., (1957) Anal. Chem., 29, p. 1702 Schwarz, R.B., Petrich, R.R., Saw, C.K., (1985) J. Non-Cryst. Solids, 76, p. 281 Bastin, G.F., Rieck, G.D., (1974) Metall. Trans., 5, p. 1827 Benedictus, R., Han, K., Traeholt, C., Böttger, A., Mittemeijer, E.J., (1998) Acta Mater., 46, p. 5491 Swalin, R.A., Martin, A., (1956) Trans. Am. Inst. Min. Engrs., 206, p. 567 Gibbs, G.B., Graham, D., Tomlin, D.H., (1963) Philos. Mag., 8, p. 1269 Bernardini, J., Lexcellent, C., Daroczi, L., Beke, D.L., (2003) Philos. Mag., 83, p. 329