Artículos de revistas
Tailoring Thermal Transport Property Of Graphene Through Oxygen Functionalization
Registro en:
Journal Of Physical Chemistry C. , v. 118, n. 3, p. 1436 - 1442, 2014.
19327447
10.1021/jp4096369
2-s2.0-84893108172
Autor
Zhang H.
Fonseca A.F.
Cho K.
Institución
Resumen
We compute thermal conductivity of graphene oxide at room temperature with molecular dynamics simulation. To validate our simulation model, we have investigated phonon scattering in graphene due to crystal boundary length and isotope defect, both of which are able to diagnose the behavior of long wavelength and short wavelength phonon scattering. Our simulation shows that thermal conductivity of pristine graphene has logarithmic divergence for the boundary length up to 2 μm. As compared with pristine graphene, thermal conductivity of graphene oxide can be reduced by a factor of 25 at low oxygen defect concentration. Moreover, we find that not only the concentration but also the configuration of the oxygen functional groups (e.g., hydroxyl, epoxide, and ether) has significant influence on the thermal conductivity. Through phonon mode analysis, phonon defect scattering as well as phonon localization are mainly responsible for the conspicuous reduced thermal conductivity. The simulation results have provided fundamental insight on how to precisely control thermal property of graphene oxide for thermal management and thermoelectric applications. © 2013 American Chemical Society. 118 3 1436 1442 Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Superior Thermal Conductivity of Single-Layer Graphene (2008) Nano Lett., 8, pp. 902-907 Balandin, A.A., Thermal Properties of Graphene and Nanostructured Carbon Materials (2011) Nat. Mater., 10, pp. 569-581 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric Field Effect in Atomically Thin Carbon Films (2004) Science, 306, pp. 666-669 Lee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene (2008) Science, 321, pp. 385-388 Yang, L., Park, C.H., Son, Y.W., Cohen, M.L., Louie, S.G., Quasiparticle Energies and Band Gaps in Graphene Nanoribbons (2007) Phys. Rev. Lett., 99, p. 186801 Haberer, D., Vyalikh, D.V., Taioli, S., Dora, B., Farjam, M., Fink, J., Marchenko, D., Simonucci, S., Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene (2010) Nano Lett., 10, pp. 3360-3366 Yan, J.-A., Xian, L., Chou, M.Y., Structural and Electronic Properties of Oxidized Graphene (2009) Phys. Rev. Lett., 103, p. 086802 Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Reddy, A.L.M., Ajayan, P.M., Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide (2012) J. Phys. Chem. Lett., 3, pp. 986-991 Hossain, M.Z., Johns, J.E., Bevan, K.H., Karmel, H.J., Liang, Y.T., Yoshimoto, S., Mukai, K., Kawai, M., Chemically Homogeneous and Thermally Reversible Oxidation of Epitaxial Graphene (2012) Nat. Chem., 4, pp. 305-309 Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M., New Insights into the Structure and Reduction of Graphite Oxide (2009) Nat. Chem., 1, pp. 403-408 Park, S., Ruoff, R.S., Chemical Methods for the Production of Graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224 Tian, H., Xie, D., Yang, Y., Ren, T.L., Zhang, G., Wang, Y.F., Zhou, C.J., Liu, L.T., A Novel Solid-State Thermal Rectifier Based on Reduced Graphene Oxide (2012) Sci. Rep., 2, p. 523 Chang, C.W., Okawa, D., Majumdar, A., Zettl, A., Solid-State Thermal Rectifier (2006) Science, 314, pp. 1121-1124 Li, B.W., Wang, L., Casati, G., Thermal Diode: Rectification of Heat Flux (2004) Phys. Rev. Lett., 93, p. 184301 Hu, J.N., Ruan, X.L., Chen, Y.P., Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study (2009) Nano Lett., 9, pp. 2730-2735 Xiao, N., Dong, X., Song, L., Liu, D., Tay, Y., Wu, S., Li, L.-J., Zhang, H., Enhanced Thermopower of Graphene Films with Oxygen Plasma Treatment (2011) ACS Nano, 5, pp. 2749-2755 Yao, Q., Chen, L., Zhang, W., Liufu, S., Chen, X., Enhanced Thermoelectric Performance of Single-Walled Carbon Nanotubes/Polyaniline Hybrid Nanocomposites (2010) ACS Nano, 4, pp. 2445-2451 Turney, J.E., McGaughey, A.J.H., Amon, C.H., Assessing the Applicability of Quantum Corrections to Classical Thermal Conductivity Predictions (2009) Phys. Rev. B, 79, p. 224305 Kong, B.D., Paul, S., Nardelli, M.B., Kim, K.W., First-Principles Analysis of Lattice Thermal Conductivity in Monolayer and Bilayer Graphene (2009) Phys. Rev. B, 80, p. 033406 Lindsay, L., Broido, D.A., Mingo, N., Flexural Phonons and Thermal Transport in Multilayer Graphene and Graphite (2011) Phys. Rev. B, 83, p. 235428 Nika, D.L., Balandin, A.A., Two-Dimensional Phonon Transport in Graphene (2012) J. Phys.: Condens. Matter, 24, p. 233203 Nika, D.L., Askerov, A.S., Balandin, A.A., Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons (2012) Nano Lett., 12, pp. 3238-3244 Ong, Z.Y., Pop, E., Effect of Substrate Modes on Thermal Transport in Supported Graphene (2011) Phys. Rev. B, 84, p. 075471 Zhang, H., Lee, G., Cho, K., Thermal Transport in Graphene and Effects of Vacancy Defects (2011) Phys. Rev. B, 84, p. 115460 Fthenakis, Z.G., Tomanek, D., Computational Study of the Thermal Conductivity in Defective Carbon Nanostructures (2012) Phys. Rev. B, 86, p. 125418 Chen, S.S., Wu, Q.Z., Mishra, C., Kang, J.Y., Zhang, H.J., Cho, K.J., Cai, W.W., Ruoff, R.S., Thermal Conductivity of Isotopically Modified Graphene (2012) Nat. Mater., 11, pp. 203-207 Bagri, A., Kim, S.-P., Ruoff, R.S., Shenoy, V.B., Thermal Transport Across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations (2011) Nano Lett., 11, pp. 3917-3921 Serov, A.Y., Ong, Z.-Y., Pop, E., Effect of Grain Boundaries on Thermal Transport in Graphene (2013) Appl. Phys. Lett., 102, p. 033104 Chien, S.K., Yang, Y.T., Chen, C.K., Influence of Hydrogen Functionalization on Thermal Conductivity of Graphene: Nonequilibrium Molecular Dynamics Simulations (2011) Appl. Phys. Lett., 98, p. 033107 Kim, J.Y., Lee, J.-H., Grossman, J.C., Thermal Transport in Functionalized Graphene (2012) ACS Nano, 6, pp. 9050-9057 Liu, B., Reddy, C.D., Jiang, J.W., Baimova, J.A., Dmitriev, S.V., Nazarov, A.A., Zhou, K., Morphology and In-Plane Thermal Conductivity of Hybrid Graphene Sheets (2012) Appl. Phys. Lett., 101, p. 211909 Huang, W., Pei, Q.-X., Liu, Z., Zhang, Y.-W., Thermal Conductivity of Fluorinated Graphene: A Non-Equilibrium Molecular Dynamics Study (2012) Chem. Phys. Lett., 552, pp. 97-101 Fonseca, A.F., Lee, G., Borders, T.L., Zhang, H.J., Kemper, T.W., Shan, T.R., Sinnott, S.B., Cho, K., Reparameterization of the REBO-CHO Potential for Graphene Oxide Molecular Dynamics Simulations (2011) Phys. Rev. B, 84, p. 075460 Kemper, T.W., Sinnott, S.B., Mechanisms of Ion-Beam Modification of Terthiophene Oligomers from Atomistic Simulations (2011) J. Phys. Chem. C, 115, pp. 23936-23945 Chenoweth, K., Van Duin, A.C.T., Goddard III, W.A., ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation (2008) J. Phys. Chem. A, 112, pp. 1040-1053 Schwamb, T., Burg, B.R., Schirmer, N.C., Poulikakos, D., An Electrical Method for the Measurement of the Thermal and Electrical Conductivity of Reduced Graphene Oxide Nanostructures (2009) Nanotechnology, 20, p. 405704 Mahanta, N.K., Abramson, A.R., Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets (2012) 13th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), p. 1. , San Diego, CA, May 30-Jun 01 -6 Lepri, S., Livi, R., Politi, A., On the Anomalous Thermal Conductivity of One-Dimensional Lattices (1998) Europhys. Lett., 43, pp. 271-276 Wang, L., Hu, B., Li, B., Logarithmic Divergent Thermal Conductivity in Two-Dimensional Nonlinear Lattices (2012) Phys. Rev. e, 86, p. 040101 Saito, K., Dhar, A., Heat Conduction in A Three Dimensional Anharmonic Crystal (2010) Phys. Rev. Lett., 104, p. 040601 Nika, D.L., Ghosh, S., Pokatilov, E.P., Balandin, A.A., Lattice Thermal Conductivity of Graphene Flakes: Comparison with Bulk Graphite (2009) Appl. Phys. Lett., 94, p. 203103 Lindsay, L., Broido, D.A., Optimized Tersoff and Brenner Empirical Potential Parameters for Lattice Dynamics and Phonon Thermal Transport in Carbon Nanotubes and Graphene (2010) Phys. Rev. B, 81, p. 205441 Ikeshoji, T., Hafskjold, B., Nonequilibrium Molecular-Dynamics Calculation of Heat-Conduction in Liquid and Through Liquid-Gas Interface (1994) Mol. Phys., 81, pp. 251-261 Bodapati, A., Schelling, P.K., Phillpot, S.R., Keblinski, P., Vibrations and Thermal Transport in Nanocrystalline Silicon (2006) Phys. Rev. B, 74, p. 245207 Biswas, R., Bouchard, A.M., Kamitakahara, W.A., Grest, G.S., Soukoulis, C.M., Vibrational Localization in Amorphous-Silicon (1988) Phys. Rev. Lett., 60, pp. 2280-2283 Mkhoyan, K.A., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Miller, S., Chhowalla, M., Atomic and Electronic Structure of Graphene-Oxide (2009) Nano Lett., 9, pp. 1058-1063 Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y.J., Unusual Infrared-Absorption Mechanism in Thermally Reduced Graphene Oxide (2010) Nat. Mater., 9, pp. 840-845 Thomas, J.A., Iutzi, R.M., McGaughey, A.J.H., Thermal Conductivity and Phonon Transport in Empty and Water-Filled Carbon Nanotubes (2010) Phys. Rev. B, 81, p. 045413 Pereira, L.F.C., Donadio, D., Divergence of the Thermal Conductivity in Uniaxially Strained Graphene (2013) Phys. Rev. B, 87, p. 125424 Singh, D., Murthy, J.Y., Fisher, T.S., On the Accuracy of Classical and Long Wavelength Approximations for Phonon Transport in Graphene (2011) J. Appl. Phys., 110, p. 113510 Bonini, N., Garg, J., Marzari, N., Acoustic Phonon Lifetimes and Thermal Transport in Free-Standing and Strained Graphene (2012) Nano Lett., 12, pp. 2673-2678 Lindsay, L., Broido, D.A., Mingo, N., Flexural Phonons and Thermal Transport in Graphene (2010) Phys. Rev. B, 82, p. 115427 Klemens, P.G., Theory of the A-Plane Thermal Conductivity of Graphite (2000) J. Wide Bandgap Mater., 7, p. 332 Zhang, H.J., Lee, G., Fonseca, A.F., Borders, T.L., Cho, K., Isotope Effect on the Thermal Conductivity of Graphene (2010) J. Nanomater., 2010, p. 537657 Che, J.W., Cagin, T., Goddard, W.A., Thermal Conductivity of Carbon Nanotubes (2000) Nanotechnology, 11, pp. 65-69 Xu, Z., Bando, Y., Liu, L., Wang, W., Bai, X., Golberg, D., Electrical Conductivity, Chemistry, and Bonding Alternations under Graphene Oxide to Graphene Transition As Revealed by in Situ TEM (2011) ACS Nano, 5, pp. 4401-4406 Allen, M.P., Tildesley, D.J., (1987) Computer Simulation of Liquids, , Oxford University Press: New York Ratsifaritana, C.A., Klemens, P.G., Scattering of Phonons by Vacancies (1987) Int. J. Thermophys., 8, pp. 737-750