dc.creator | Zhang H. | |
dc.creator | Fonseca A.F. | |
dc.creator | Cho K. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:55:18Z | |
dc.date | 2015-11-26T14:37:58Z | |
dc.date | 2015-06-25T17:55:18Z | |
dc.date | 2015-11-26T14:37:58Z | |
dc.date.accessioned | 2018-03-28T21:42:35Z | |
dc.date.available | 2018-03-28T21:42:35Z | |
dc.identifier | | |
dc.identifier | Journal Of Physical Chemistry C. , v. 118, n. 3, p. 1436 - 1442, 2014. | |
dc.identifier | 19327447 | |
dc.identifier | 10.1021/jp4096369 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84893108172&partnerID=40&md5=b55d409a636f0d478ff9accbde325413 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86799 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86799 | |
dc.identifier | 2-s2.0-84893108172 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1249350 | |
dc.description | We compute thermal conductivity of graphene oxide at room temperature with molecular dynamics simulation. To validate our simulation model, we have investigated phonon scattering in graphene due to crystal boundary length and isotope defect, both of which are able to diagnose the behavior of long wavelength and short wavelength phonon scattering. Our simulation shows that thermal conductivity of pristine graphene has logarithmic divergence for the boundary length up to 2 μm. As compared with pristine graphene, thermal conductivity of graphene oxide can be reduced by a factor of 25 at low oxygen defect concentration. Moreover, we find that not only the concentration but also the configuration of the oxygen functional groups (e.g., hydroxyl, epoxide, and ether) has significant influence on the thermal conductivity. Through phonon mode analysis, phonon defect scattering as well as phonon localization are mainly responsible for the conspicuous reduced thermal conductivity. The simulation results have provided fundamental insight on how to precisely control thermal property of graphene oxide for thermal management and thermoelectric applications. © 2013 American Chemical Society. | |
dc.description | 118 | |
dc.description | 3 | |
dc.description | 1436 | |
dc.description | 1442 | |
dc.description | Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Superior Thermal Conductivity of Single-Layer Graphene (2008) Nano Lett., 8, pp. 902-907 | |
dc.description | Balandin, A.A., Thermal Properties of Graphene and Nanostructured Carbon Materials (2011) Nat. Mater., 10, pp. 569-581 | |
dc.description | Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric Field Effect in Atomically Thin Carbon Films (2004) Science, 306, pp. 666-669 | |
dc.description | Lee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene (2008) Science, 321, pp. 385-388 | |
dc.description | Yang, L., Park, C.H., Son, Y.W., Cohen, M.L., Louie, S.G., Quasiparticle Energies and Band Gaps in Graphene Nanoribbons (2007) Phys. Rev. Lett., 99, p. 186801 | |
dc.description | Haberer, D., Vyalikh, D.V., Taioli, S., Dora, B., Farjam, M., Fink, J., Marchenko, D., Simonucci, S., Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene (2010) Nano Lett., 10, pp. 3360-3366 | |
dc.description | Yan, J.-A., Xian, L., Chou, M.Y., Structural and Electronic Properties of Oxidized Graphene (2009) Phys. Rev. Lett., 103, p. 086802 | |
dc.description | Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Reddy, A.L.M., Ajayan, P.M., Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide (2012) J. Phys. Chem. Lett., 3, pp. 986-991 | |
dc.description | Hossain, M.Z., Johns, J.E., Bevan, K.H., Karmel, H.J., Liang, Y.T., Yoshimoto, S., Mukai, K., Kawai, M., Chemically Homogeneous and Thermally Reversible Oxidation of Epitaxial Graphene (2012) Nat. Chem., 4, pp. 305-309 | |
dc.description | Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M., New Insights into the Structure and Reduction of Graphite Oxide (2009) Nat. Chem., 1, pp. 403-408 | |
dc.description | Park, S., Ruoff, R.S., Chemical Methods for the Production of Graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224 | |
dc.description | Tian, H., Xie, D., Yang, Y., Ren, T.L., Zhang, G., Wang, Y.F., Zhou, C.J., Liu, L.T., A Novel Solid-State Thermal Rectifier Based on Reduced Graphene Oxide (2012) Sci. Rep., 2, p. 523 | |
dc.description | Chang, C.W., Okawa, D., Majumdar, A., Zettl, A., Solid-State Thermal Rectifier (2006) Science, 314, pp. 1121-1124 | |
dc.description | Li, B.W., Wang, L., Casati, G., Thermal Diode: Rectification of Heat Flux (2004) Phys. Rev. Lett., 93, p. 184301 | |
dc.description | Hu, J.N., Ruan, X.L., Chen, Y.P., Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study (2009) Nano Lett., 9, pp. 2730-2735 | |
dc.description | Xiao, N., Dong, X., Song, L., Liu, D., Tay, Y., Wu, S., Li, L.-J., Zhang, H., Enhanced Thermopower of Graphene Films with Oxygen Plasma Treatment (2011) ACS Nano, 5, pp. 2749-2755 | |
dc.description | Yao, Q., Chen, L., Zhang, W., Liufu, S., Chen, X., Enhanced Thermoelectric Performance of Single-Walled Carbon Nanotubes/Polyaniline Hybrid Nanocomposites (2010) ACS Nano, 4, pp. 2445-2451 | |
dc.description | Turney, J.E., McGaughey, A.J.H., Amon, C.H., Assessing the Applicability of Quantum Corrections to Classical Thermal Conductivity Predictions (2009) Phys. Rev. B, 79, p. 224305 | |
dc.description | Kong, B.D., Paul, S., Nardelli, M.B., Kim, K.W., First-Principles Analysis of Lattice Thermal Conductivity in Monolayer and Bilayer Graphene (2009) Phys. Rev. B, 80, p. 033406 | |
dc.description | Lindsay, L., Broido, D.A., Mingo, N., Flexural Phonons and Thermal Transport in Multilayer Graphene and Graphite (2011) Phys. Rev. B, 83, p. 235428 | |
dc.description | Nika, D.L., Balandin, A.A., Two-Dimensional Phonon Transport in Graphene (2012) J. Phys.: Condens. Matter, 24, p. 233203 | |
dc.description | Nika, D.L., Askerov, A.S., Balandin, A.A., Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons (2012) Nano Lett., 12, pp. 3238-3244 | |
dc.description | Ong, Z.Y., Pop, E., Effect of Substrate Modes on Thermal Transport in Supported Graphene (2011) Phys. Rev. B, 84, p. 075471 | |
dc.description | Zhang, H., Lee, G., Cho, K., Thermal Transport in Graphene and Effects of Vacancy Defects (2011) Phys. Rev. B, 84, p. 115460 | |
dc.description | Fthenakis, Z.G., Tomanek, D., Computational Study of the Thermal Conductivity in Defective Carbon Nanostructures (2012) Phys. Rev. B, 86, p. 125418 | |
dc.description | Chen, S.S., Wu, Q.Z., Mishra, C., Kang, J.Y., Zhang, H.J., Cho, K.J., Cai, W.W., Ruoff, R.S., Thermal Conductivity of Isotopically Modified Graphene (2012) Nat. Mater., 11, pp. 203-207 | |
dc.description | Bagri, A., Kim, S.-P., Ruoff, R.S., Shenoy, V.B., Thermal Transport Across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations (2011) Nano Lett., 11, pp. 3917-3921 | |
dc.description | Serov, A.Y., Ong, Z.-Y., Pop, E., Effect of Grain Boundaries on Thermal Transport in Graphene (2013) Appl. Phys. Lett., 102, p. 033104 | |
dc.description | Chien, S.K., Yang, Y.T., Chen, C.K., Influence of Hydrogen Functionalization on Thermal Conductivity of Graphene: Nonequilibrium Molecular Dynamics Simulations (2011) Appl. Phys. Lett., 98, p. 033107 | |
dc.description | Kim, J.Y., Lee, J.-H., Grossman, J.C., Thermal Transport in Functionalized Graphene (2012) ACS Nano, 6, pp. 9050-9057 | |
dc.description | Liu, B., Reddy, C.D., Jiang, J.W., Baimova, J.A., Dmitriev, S.V., Nazarov, A.A., Zhou, K., Morphology and In-Plane Thermal Conductivity of Hybrid Graphene Sheets (2012) Appl. Phys. Lett., 101, p. 211909 | |
dc.description | Huang, W., Pei, Q.-X., Liu, Z., Zhang, Y.-W., Thermal Conductivity of Fluorinated Graphene: A Non-Equilibrium Molecular Dynamics Study (2012) Chem. Phys. Lett., 552, pp. 97-101 | |
dc.description | Fonseca, A.F., Lee, G., Borders, T.L., Zhang, H.J., Kemper, T.W., Shan, T.R., Sinnott, S.B., Cho, K., Reparameterization of the REBO-CHO Potential for Graphene Oxide Molecular Dynamics Simulations (2011) Phys. Rev. B, 84, p. 075460 | |
dc.description | Kemper, T.W., Sinnott, S.B., Mechanisms of Ion-Beam Modification of Terthiophene Oligomers from Atomistic Simulations (2011) J. Phys. Chem. C, 115, pp. 23936-23945 | |
dc.description | Chenoweth, K., Van Duin, A.C.T., Goddard III, W.A., ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation (2008) J. Phys. Chem. A, 112, pp. 1040-1053 | |
dc.description | Schwamb, T., Burg, B.R., Schirmer, N.C., Poulikakos, D., An Electrical Method for the Measurement of the Thermal and Electrical Conductivity of Reduced Graphene Oxide Nanostructures (2009) Nanotechnology, 20, p. 405704 | |
dc.description | Mahanta, N.K., Abramson, A.R., Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets (2012) 13th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), p. 1. , San Diego, CA, May 30-Jun 01 -6 | |
dc.description | Lepri, S., Livi, R., Politi, A., On the Anomalous Thermal Conductivity of One-Dimensional Lattices (1998) Europhys. Lett., 43, pp. 271-276 | |
dc.description | Wang, L., Hu, B., Li, B., Logarithmic Divergent Thermal Conductivity in Two-Dimensional Nonlinear Lattices (2012) Phys. Rev. e, 86, p. 040101 | |
dc.description | Saito, K., Dhar, A., Heat Conduction in A Three Dimensional Anharmonic Crystal (2010) Phys. Rev. Lett., 104, p. 040601 | |
dc.description | Nika, D.L., Ghosh, S., Pokatilov, E.P., Balandin, A.A., Lattice Thermal Conductivity of Graphene Flakes: Comparison with Bulk Graphite (2009) Appl. Phys. Lett., 94, p. 203103 | |
dc.description | Lindsay, L., Broido, D.A., Optimized Tersoff and Brenner Empirical Potential Parameters for Lattice Dynamics and Phonon Thermal Transport in Carbon Nanotubes and Graphene (2010) Phys. Rev. B, 81, p. 205441 | |
dc.description | Ikeshoji, T., Hafskjold, B., Nonequilibrium Molecular-Dynamics Calculation of Heat-Conduction in Liquid and Through Liquid-Gas Interface (1994) Mol. Phys., 81, pp. 251-261 | |
dc.description | Bodapati, A., Schelling, P.K., Phillpot, S.R., Keblinski, P., Vibrations and Thermal Transport in Nanocrystalline Silicon (2006) Phys. Rev. B, 74, p. 245207 | |
dc.description | Biswas, R., Bouchard, A.M., Kamitakahara, W.A., Grest, G.S., Soukoulis, C.M., Vibrational Localization in Amorphous-Silicon (1988) Phys. Rev. Lett., 60, pp. 2280-2283 | |
dc.description | Mkhoyan, K.A., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Miller, S., Chhowalla, M., Atomic and Electronic Structure of Graphene-Oxide (2009) Nano Lett., 9, pp. 1058-1063 | |
dc.description | Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y.J., Unusual Infrared-Absorption Mechanism in Thermally Reduced Graphene Oxide (2010) Nat. Mater., 9, pp. 840-845 | |
dc.description | Thomas, J.A., Iutzi, R.M., McGaughey, A.J.H., Thermal Conductivity and Phonon Transport in Empty and Water-Filled Carbon Nanotubes (2010) Phys. Rev. B, 81, p. 045413 | |
dc.description | Pereira, L.F.C., Donadio, D., Divergence of the Thermal Conductivity in Uniaxially Strained Graphene (2013) Phys. Rev. B, 87, p. 125424 | |
dc.description | Singh, D., Murthy, J.Y., Fisher, T.S., On the Accuracy of Classical and Long Wavelength Approximations for Phonon Transport in Graphene (2011) J. Appl. Phys., 110, p. 113510 | |
dc.description | Bonini, N., Garg, J., Marzari, N., Acoustic Phonon Lifetimes and Thermal Transport in Free-Standing and Strained Graphene (2012) Nano Lett., 12, pp. 2673-2678 | |
dc.description | Lindsay, L., Broido, D.A., Mingo, N., Flexural Phonons and Thermal Transport in Graphene (2010) Phys. Rev. B, 82, p. 115427 | |
dc.description | Klemens, P.G., Theory of the A-Plane Thermal Conductivity of Graphite (2000) J. Wide Bandgap Mater., 7, p. 332 | |
dc.description | Zhang, H.J., Lee, G., Fonseca, A.F., Borders, T.L., Cho, K., Isotope Effect on the Thermal Conductivity of Graphene (2010) J. Nanomater., 2010, p. 537657 | |
dc.description | Che, J.W., Cagin, T., Goddard, W.A., Thermal Conductivity of Carbon Nanotubes (2000) Nanotechnology, 11, pp. 65-69 | |
dc.description | Xu, Z., Bando, Y., Liu, L., Wang, W., Bai, X., Golberg, D., Electrical Conductivity, Chemistry, and Bonding Alternations under Graphene Oxide to Graphene Transition As Revealed by in Situ TEM (2011) ACS Nano, 5, pp. 4401-4406 | |
dc.description | Allen, M.P., Tildesley, D.J., (1987) Computer Simulation of Liquids, , Oxford University Press: New York | |
dc.description | Ratsifaritana, C.A., Klemens, P.G., Scattering of Phonons by Vacancies (1987) Int. J. Thermophys., 8, pp. 737-750 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Physical Chemistry C | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Tailoring Thermal Transport Property Of Graphene Through Oxygen Functionalization | |
dc.type | Artículos de revistas | |