dc.creatorZhang H.
dc.creatorFonseca A.F.
dc.creatorCho K.
dc.date2014
dc.date2015-06-25T17:55:18Z
dc.date2015-11-26T14:37:58Z
dc.date2015-06-25T17:55:18Z
dc.date2015-11-26T14:37:58Z
dc.date.accessioned2018-03-28T21:42:35Z
dc.date.available2018-03-28T21:42:35Z
dc.identifier
dc.identifierJournal Of Physical Chemistry C. , v. 118, n. 3, p. 1436 - 1442, 2014.
dc.identifier19327447
dc.identifier10.1021/jp4096369
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84893108172&partnerID=40&md5=b55d409a636f0d478ff9accbde325413
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86799
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86799
dc.identifier2-s2.0-84893108172
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249350
dc.descriptionWe compute thermal conductivity of graphene oxide at room temperature with molecular dynamics simulation. To validate our simulation model, we have investigated phonon scattering in graphene due to crystal boundary length and isotope defect, both of which are able to diagnose the behavior of long wavelength and short wavelength phonon scattering. Our simulation shows that thermal conductivity of pristine graphene has logarithmic divergence for the boundary length up to 2 μm. As compared with pristine graphene, thermal conductivity of graphene oxide can be reduced by a factor of 25 at low oxygen defect concentration. Moreover, we find that not only the concentration but also the configuration of the oxygen functional groups (e.g., hydroxyl, epoxide, and ether) has significant influence on the thermal conductivity. Through phonon mode analysis, phonon defect scattering as well as phonon localization are mainly responsible for the conspicuous reduced thermal conductivity. The simulation results have provided fundamental insight on how to precisely control thermal property of graphene oxide for thermal management and thermoelectric applications. © 2013 American Chemical Society.
dc.description118
dc.description3
dc.description1436
dc.description1442
dc.descriptionBalandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Superior Thermal Conductivity of Single-Layer Graphene (2008) Nano Lett., 8, pp. 902-907
dc.descriptionBalandin, A.A., Thermal Properties of Graphene and Nanostructured Carbon Materials (2011) Nat. Mater., 10, pp. 569-581
dc.descriptionNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric Field Effect in Atomically Thin Carbon Films (2004) Science, 306, pp. 666-669
dc.descriptionLee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene (2008) Science, 321, pp. 385-388
dc.descriptionYang, L., Park, C.H., Son, Y.W., Cohen, M.L., Louie, S.G., Quasiparticle Energies and Band Gaps in Graphene Nanoribbons (2007) Phys. Rev. Lett., 99, p. 186801
dc.descriptionHaberer, D., Vyalikh, D.V., Taioli, S., Dora, B., Farjam, M., Fink, J., Marchenko, D., Simonucci, S., Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene (2010) Nano Lett., 10, pp. 3360-3366
dc.descriptionYan, J.-A., Xian, L., Chou, M.Y., Structural and Electronic Properties of Oxidized Graphene (2009) Phys. Rev. Lett., 103, p. 086802
dc.descriptionMathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Reddy, A.L.M., Ajayan, P.M., Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide (2012) J. Phys. Chem. Lett., 3, pp. 986-991
dc.descriptionHossain, M.Z., Johns, J.E., Bevan, K.H., Karmel, H.J., Liang, Y.T., Yoshimoto, S., Mukai, K., Kawai, M., Chemically Homogeneous and Thermally Reversible Oxidation of Epitaxial Graphene (2012) Nat. Chem., 4, pp. 305-309
dc.descriptionGao, W., Alemany, L.B., Ci, L., Ajayan, P.M., New Insights into the Structure and Reduction of Graphite Oxide (2009) Nat. Chem., 1, pp. 403-408
dc.descriptionPark, S., Ruoff, R.S., Chemical Methods for the Production of Graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224
dc.descriptionTian, H., Xie, D., Yang, Y., Ren, T.L., Zhang, G., Wang, Y.F., Zhou, C.J., Liu, L.T., A Novel Solid-State Thermal Rectifier Based on Reduced Graphene Oxide (2012) Sci. Rep., 2, p. 523
dc.descriptionChang, C.W., Okawa, D., Majumdar, A., Zettl, A., Solid-State Thermal Rectifier (2006) Science, 314, pp. 1121-1124
dc.descriptionLi, B.W., Wang, L., Casati, G., Thermal Diode: Rectification of Heat Flux (2004) Phys. Rev. Lett., 93, p. 184301
dc.descriptionHu, J.N., Ruan, X.L., Chen, Y.P., Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study (2009) Nano Lett., 9, pp. 2730-2735
dc.descriptionXiao, N., Dong, X., Song, L., Liu, D., Tay, Y., Wu, S., Li, L.-J., Zhang, H., Enhanced Thermopower of Graphene Films with Oxygen Plasma Treatment (2011) ACS Nano, 5, pp. 2749-2755
dc.descriptionYao, Q., Chen, L., Zhang, W., Liufu, S., Chen, X., Enhanced Thermoelectric Performance of Single-Walled Carbon Nanotubes/Polyaniline Hybrid Nanocomposites (2010) ACS Nano, 4, pp. 2445-2451
dc.descriptionTurney, J.E., McGaughey, A.J.H., Amon, C.H., Assessing the Applicability of Quantum Corrections to Classical Thermal Conductivity Predictions (2009) Phys. Rev. B, 79, p. 224305
dc.descriptionKong, B.D., Paul, S., Nardelli, M.B., Kim, K.W., First-Principles Analysis of Lattice Thermal Conductivity in Monolayer and Bilayer Graphene (2009) Phys. Rev. B, 80, p. 033406
dc.descriptionLindsay, L., Broido, D.A., Mingo, N., Flexural Phonons and Thermal Transport in Multilayer Graphene and Graphite (2011) Phys. Rev. B, 83, p. 235428
dc.descriptionNika, D.L., Balandin, A.A., Two-Dimensional Phonon Transport in Graphene (2012) J. Phys.: Condens. Matter, 24, p. 233203
dc.descriptionNika, D.L., Askerov, A.S., Balandin, A.A., Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons (2012) Nano Lett., 12, pp. 3238-3244
dc.descriptionOng, Z.Y., Pop, E., Effect of Substrate Modes on Thermal Transport in Supported Graphene (2011) Phys. Rev. B, 84, p. 075471
dc.descriptionZhang, H., Lee, G., Cho, K., Thermal Transport in Graphene and Effects of Vacancy Defects (2011) Phys. Rev. B, 84, p. 115460
dc.descriptionFthenakis, Z.G., Tomanek, D., Computational Study of the Thermal Conductivity in Defective Carbon Nanostructures (2012) Phys. Rev. B, 86, p. 125418
dc.descriptionChen, S.S., Wu, Q.Z., Mishra, C., Kang, J.Y., Zhang, H.J., Cho, K.J., Cai, W.W., Ruoff, R.S., Thermal Conductivity of Isotopically Modified Graphene (2012) Nat. Mater., 11, pp. 203-207
dc.descriptionBagri, A., Kim, S.-P., Ruoff, R.S., Shenoy, V.B., Thermal Transport Across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations (2011) Nano Lett., 11, pp. 3917-3921
dc.descriptionSerov, A.Y., Ong, Z.-Y., Pop, E., Effect of Grain Boundaries on Thermal Transport in Graphene (2013) Appl. Phys. Lett., 102, p. 033104
dc.descriptionChien, S.K., Yang, Y.T., Chen, C.K., Influence of Hydrogen Functionalization on Thermal Conductivity of Graphene: Nonequilibrium Molecular Dynamics Simulations (2011) Appl. Phys. Lett., 98, p. 033107
dc.descriptionKim, J.Y., Lee, J.-H., Grossman, J.C., Thermal Transport in Functionalized Graphene (2012) ACS Nano, 6, pp. 9050-9057
dc.descriptionLiu, B., Reddy, C.D., Jiang, J.W., Baimova, J.A., Dmitriev, S.V., Nazarov, A.A., Zhou, K., Morphology and In-Plane Thermal Conductivity of Hybrid Graphene Sheets (2012) Appl. Phys. Lett., 101, p. 211909
dc.descriptionHuang, W., Pei, Q.-X., Liu, Z., Zhang, Y.-W., Thermal Conductivity of Fluorinated Graphene: A Non-Equilibrium Molecular Dynamics Study (2012) Chem. Phys. Lett., 552, pp. 97-101
dc.descriptionFonseca, A.F., Lee, G., Borders, T.L., Zhang, H.J., Kemper, T.W., Shan, T.R., Sinnott, S.B., Cho, K., Reparameterization of the REBO-CHO Potential for Graphene Oxide Molecular Dynamics Simulations (2011) Phys. Rev. B, 84, p. 075460
dc.descriptionKemper, T.W., Sinnott, S.B., Mechanisms of Ion-Beam Modification of Terthiophene Oligomers from Atomistic Simulations (2011) J. Phys. Chem. C, 115, pp. 23936-23945
dc.descriptionChenoweth, K., Van Duin, A.C.T., Goddard III, W.A., ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation (2008) J. Phys. Chem. A, 112, pp. 1040-1053
dc.descriptionSchwamb, T., Burg, B.R., Schirmer, N.C., Poulikakos, D., An Electrical Method for the Measurement of the Thermal and Electrical Conductivity of Reduced Graphene Oxide Nanostructures (2009) Nanotechnology, 20, p. 405704
dc.descriptionMahanta, N.K., Abramson, A.R., Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets (2012) 13th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), p. 1. , San Diego, CA, May 30-Jun 01 -6
dc.descriptionLepri, S., Livi, R., Politi, A., On the Anomalous Thermal Conductivity of One-Dimensional Lattices (1998) Europhys. Lett., 43, pp. 271-276
dc.descriptionWang, L., Hu, B., Li, B., Logarithmic Divergent Thermal Conductivity in Two-Dimensional Nonlinear Lattices (2012) Phys. Rev. e, 86, p. 040101
dc.descriptionSaito, K., Dhar, A., Heat Conduction in A Three Dimensional Anharmonic Crystal (2010) Phys. Rev. Lett., 104, p. 040601
dc.descriptionNika, D.L., Ghosh, S., Pokatilov, E.P., Balandin, A.A., Lattice Thermal Conductivity of Graphene Flakes: Comparison with Bulk Graphite (2009) Appl. Phys. Lett., 94, p. 203103
dc.descriptionLindsay, L., Broido, D.A., Optimized Tersoff and Brenner Empirical Potential Parameters for Lattice Dynamics and Phonon Thermal Transport in Carbon Nanotubes and Graphene (2010) Phys. Rev. B, 81, p. 205441
dc.descriptionIkeshoji, T., Hafskjold, B., Nonequilibrium Molecular-Dynamics Calculation of Heat-Conduction in Liquid and Through Liquid-Gas Interface (1994) Mol. Phys., 81, pp. 251-261
dc.descriptionBodapati, A., Schelling, P.K., Phillpot, S.R., Keblinski, P., Vibrations and Thermal Transport in Nanocrystalline Silicon (2006) Phys. Rev. B, 74, p. 245207
dc.descriptionBiswas, R., Bouchard, A.M., Kamitakahara, W.A., Grest, G.S., Soukoulis, C.M., Vibrational Localization in Amorphous-Silicon (1988) Phys. Rev. Lett., 60, pp. 2280-2283
dc.descriptionMkhoyan, K.A., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Miller, S., Chhowalla, M., Atomic and Electronic Structure of Graphene-Oxide (2009) Nano Lett., 9, pp. 1058-1063
dc.descriptionAcik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y.J., Unusual Infrared-Absorption Mechanism in Thermally Reduced Graphene Oxide (2010) Nat. Mater., 9, pp. 840-845
dc.descriptionThomas, J.A., Iutzi, R.M., McGaughey, A.J.H., Thermal Conductivity and Phonon Transport in Empty and Water-Filled Carbon Nanotubes (2010) Phys. Rev. B, 81, p. 045413
dc.descriptionPereira, L.F.C., Donadio, D., Divergence of the Thermal Conductivity in Uniaxially Strained Graphene (2013) Phys. Rev. B, 87, p. 125424
dc.descriptionSingh, D., Murthy, J.Y., Fisher, T.S., On the Accuracy of Classical and Long Wavelength Approximations for Phonon Transport in Graphene (2011) J. Appl. Phys., 110, p. 113510
dc.descriptionBonini, N., Garg, J., Marzari, N., Acoustic Phonon Lifetimes and Thermal Transport in Free-Standing and Strained Graphene (2012) Nano Lett., 12, pp. 2673-2678
dc.descriptionLindsay, L., Broido, D.A., Mingo, N., Flexural Phonons and Thermal Transport in Graphene (2010) Phys. Rev. B, 82, p. 115427
dc.descriptionKlemens, P.G., Theory of the A-Plane Thermal Conductivity of Graphite (2000) J. Wide Bandgap Mater., 7, p. 332
dc.descriptionZhang, H.J., Lee, G., Fonseca, A.F., Borders, T.L., Cho, K., Isotope Effect on the Thermal Conductivity of Graphene (2010) J. Nanomater., 2010, p. 537657
dc.descriptionChe, J.W., Cagin, T., Goddard, W.A., Thermal Conductivity of Carbon Nanotubes (2000) Nanotechnology, 11, pp. 65-69
dc.descriptionXu, Z., Bando, Y., Liu, L., Wang, W., Bai, X., Golberg, D., Electrical Conductivity, Chemistry, and Bonding Alternations under Graphene Oxide to Graphene Transition As Revealed by in Situ TEM (2011) ACS Nano, 5, pp. 4401-4406
dc.descriptionAllen, M.P., Tildesley, D.J., (1987) Computer Simulation of Liquids, , Oxford University Press: New York
dc.descriptionRatsifaritana, C.A., Klemens, P.G., Scattering of Phonons by Vacancies (1987) Int. J. Thermophys., 8, pp. 737-750
dc.languageen
dc.publisher
dc.relationJournal of Physical Chemistry C
dc.rightsfechado
dc.sourceScopus
dc.titleTailoring Thermal Transport Property Of Graphene Through Oxygen Functionalization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución