Artículos de revistas
Atomic Structure Of Cr2o3/ag(111) And Pd/cr2o3/ag(111) Surfaces: A Photoelectron Diffraction Investigation
Registro en:
Journal Of Physical Chemistry C. American Chemical Society, v. 118, n. 35, p. 20452 - 20460, 2014.
19327447
10.1021/jp506507e
2-s2.0-84914129283
Autor
Kilian A.S.
Bernardi F.
Pancotti A.
Landers R.
De Siervo A.
Morais J.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) A detailed investigation concerning the atomic structure of Cr2O3 and Pd/Cr2O3 ultrathin films deposited on a Ag(111) single crystal is presented. The films were prepared by MBE (molecular beam epitaxy) and characterized in situ by LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy), and XPD (X-ray photoelectron diffraction). Evidences of rotated domains and an oxygen-terminated Cr2O3/Ag(111) surface were observed, along with significant contractions of the oxides outermost interlayer distances. The deposition of Pd atoms on the Cr2O3 surface formed a four-monolayer film, fcc packed and oriented in the [111] direction, which presented changes in monolayer spacing and lateral atomic distance compared to the expected values for bulk Pd. The observed surface structure may shed light on new physical properties such as the induced magnetic ordering in Pd atoms. 118 35 20452 20460 CAPES; São Paulo Research Foundation; FAPERGS; São Paulo Research Foundation; FAPESP; São Paulo Research Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Wang, J., Scholl, A., Zheng, H., Ogale, S.B., Viehland, D., Schlom, D.G., Spaldin, N.A., Ramesh, R., Response to comment on epitaxial BiFeO3 multiferroic thin film heterostructures (2005) Science, 307, p. 1203 Chrysicopoulou, P., Davazoglou, D., Trapalis, C., Kordas, G., Optical properties of very thin (<100 nm) sol-gel TiO2 films (1998) Thin Solid Films, 323, pp. 188-193 Hardwick, D.A., The mechanical properties of thin films: A review (1987) Thin Solid Films, 154, pp. 109-124 Rao, R.A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., Tsui, F., Three-dimensional strain states and crystallographic domain structures of epitaxial colossal magnetoresistive La0.8Ca0.2MnO3 thin films (1998) Appl. Phys. Lett., 73, pp. 3294-3296 Wei, C.M., Chou, M.Y., Theory of quantum size effects in thin Pb(111) films (2002) Phys. Rev. B, 66, p. 233408 Wormeester, H., Hüger, E., Bauer, E., Hcp and bcc Cu and Pd Films (1996) Phys. Rev. Lett., 77, pp. 1540-1543 Dawber, M., Rabe, K.M., Scott, J.F., Physics of thin-film ferroelectric oxides (2005) Rev. Mod. Phys., 77, pp. 1083-1130 Libuda, J., Freund, H.J., Molecular beam experiments on model catalysts (2005) Surf. Sci. Rep., 57, pp. 157-298 Street, S.C., Xu, C., Goodman, D.W., The physical and chemical properties of ultrathin oxide films (1997) Annu. Rev. Phys. Chem., 48, pp. 43-68 Chen, M.S., Goodman, D.W., Ultrathin, ordered oxide films on metal surfaces (2008) J. Phys.: Condens. Matter, 20, p. 264013 Weckhuysen, B.M., Schoonheydt, R.A., Alkane dehydrogenation over supported chromium oxide catalysts (1999) Catal. Today, 51, pp. 223-232 Marcilly, C., Delmon, B., The activity of true Cr2O3-Al2O3 solid solutions in dehydrogenation (1972) J. Catal., 24, pp. 336-347 Flick, D.W., Huff, M.C., Oxidative dehydrogenation of ethane over supported chromium oxide and Pt modified chromium oxide (1999) Appl. Catal., A, 187, pp. 13-24 Wolter, K., Kuhlenbeck, H., Freund, H.J., Palladium deposits on a single crystalline Cr2O3(0001) surface (2002) J. Phys. Chem. B, 106, pp. 6723-6731 Lim, S.H., Murakami, M., Lofland, S.E., Zambano, A.J., Salamanca-Riba, L.G., Takeuchi, I., Exchange bias in thin-film (Co/Pt)3/Cr2O3 multilayers (2009) J. Magn. Magn. Mater., 321, pp. 1955-1958 Shiratsuchi, Y., Nakatani, T., Nakatani, R., Magnetic coupling at interface of ultrathin Co film and antiferromagnetic Cr2O3(0001) film (2009) J. Appl. Phys., 106, p. 033903 Priyantha, W.A.A., Waddill, G.D., Structure of chromium oxide ultrathin films on Ag(111) (2005) Surf. Sci., 578, pp. 149-161 Pancotti, A., De Siervo, A., Carazzolle, M., Landers, R., Kleiman, G., Ordered oxide surfaces on metals: Chromium oxide (2011) Top. Catal., 54, pp. 90-96 Rohr, F., Bäumer, M., Freund, H.J., Mejias, J.A., Staemmler, V., Müller, S., Hammer, L., Heinz, K., Strong relaxations at the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations (1997) Surf. Sci., 372, pp. 291-297 Lubbe, M., Moritz, W., A LEED analysis of the clean surfaces of α-Fe2O3(0001) and α-Cr2O3(0001) bulk single crystals (2009) J. Phys.: Condens. Matter, 21, p. 134010 Wang, X.-G., Smith, J.R., Surface phase diagram for Cr2O3(0001): Ab initio density functional study (2003) Phys. Rev. B, 68, p. 201402 San Miguel, M.A., Álvarea, L.J., Fernández Sanz, J., Odriozola, J.A., Cr2O3 (0001) oxygen-terminating surface. A molecular dynamics study (1999) J. Mol. Struct.: THEOCHEM, 463, pp. 185-190 Nishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura, M., Okamoto, T., Hamada, N., Self-regeneration of a Pd-perovskite catalyst for automotive emissions control (2002) Nature, 418, pp. 164-167 Amatore, C., Jutand, A., Mechanistic and kinetic studies of palladium catalytic systems (1999) J. Organomet. Chem., 576, pp. 254-278 Astruc, D., Palladium catalysis using dendrimers: Molecular catalysts versus nanoparticles (2010) Tetrahedron: Asymmetry, 21, pp. 1041-1054 Tsuji, J., (2004) Palladium Reagents and Catalysts: New Perspectives for the 21st Century, , Wiley: West Sussex, U.K Werner, E.W., Sigman, M.S., A highly selective and general palladium catalyst for the oxidative Heck reaction of electronically nonbiased olefins (2010) J. Am. Chem. Soc., 132, pp. 13981-13983 Hardy, J.J.E., Hubert, S., Macquarrie, D.J., Wilson, A.J., Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions (2004) Green Chem., 6, pp. 53-56 Chinchilla, R., Nájera, C., The Sonogashira reaction: A booming methodology in synthetic organic chemistry (2007) Chem. Rev., 107, pp. 874-922 Hoveyda, A.H., Zhugralin, A.R., The remarkable metal-catalysed olefin metathesis reaction (2007) Nature, 450, pp. 243-251 Methfessel, M., Hennig, D., Scheffler, M., Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals (1992) Phys. Rev. B, 46, pp. 4816-4829 Trimble, T.M., Cammarata, R.C., Many-body effects on surface stress, surface energy and surface relaxation of fcc metals (2008) Surf. Sci., 602, pp. 2339-2347 Wan, J., Fan, Y.L., Gong, D.W., Shen, S.G., Fan, X.Q., Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb (1999) Modell. Simul. Mater. Sci. Eng., 7, pp. 189-206 Hüger, E., Osuch, K., Ferromagnetism in hexagonal close-packed Pd (2003) EPL, 63, pp. 90-96 Shinohara, T., Sato, T., Taniyama, T., Surface ferromagnetism of Pd fine particles (2003) Phys. Rev. Lett., 91, p. 197201 Hüger, E., Osuch, K., Pd bonded on Nb(001): Dependence of noble metal and ferromagnetic characteristics on film thickness (2005) Phys. Rev. B, 72, p. 085432 De Siervo, A., De Biasi, E., Garcia, F., Landers, R., Martins, M.D., Macedo, W.A.A., Surface structure determination of Pd ultrathin films on Ru(0001): Possible magnetic behavior (2007) Phys. Rev. B, 76, p. 075432 Dreiner, S., Schürmann, M., Westphal, C., Structural analysis of the SiO2/Si(100) interface by means of photoelectron diffraction (2004) Phys. Rev. Lett., 93, p. 126101 Westphal, C., The study of the local atomic structure by means of X-ray photoelectron diffraction (2003) Surf. Sci. Rep., 50, pp. 1-106 De Lima, L.H., De Siervo, A., Landers, R., Viana, G.A., Goncalves, A.M.B., Lacerda, R.G., Häberle, P., Atomic surface structure of graphene and its buffer layer on SiC(0001): A chemical-specific photoelectron diffraction approach (2013) Phys. Rev. B, 87, p. 081403 Kuznetsov, M.V., Ogorodnikov, I.I., Vorokh, A.S., X-Ray photoelectron diffraction and photoelectron holography as methods for investigating the local atomic structure of the surface of solids (2014) Russ. Chem. Rev., 83, pp. 13-37 Rehr, J.J., Albers, R.C., Scattering-matrix formulation of curved-wave multiple-scattering theory: Application to x-ray-absorption fine structure (1990) Phys. Rev. B, 41, pp. 8139-8149 Chen, Y., García De Abajo, F.J., Chassé, A., Ynzunza, R.X., Kaduwela, A.P., Van Hove, M.A., Fadley, C.S., Convergence and reliability of the Rehr-Albers formalism in multiple-scattering calculations of photoelectron diffraction (1998) Phys. Rev. B, 58, p. 13121 Viana, M.L., Muino, R.D., Soares, E.A., Van Hove, M.A., De Carvalho, V.E., Global search in photoelectron diffraction structure determination using genetic algorithms (2007) J. Phys.: Condens. Matter, 19, pp. 1-14 De Siervo, A., Soares, E.A., Landers, R., Fazan, T.A., Morais, J., Kleiman, G.G., Pd on Cu(111) studied by photoelectron diffraction (2002) Surf. Sci., 504, pp. 215-222 Pendry, J.B., Reliability factors for LEED calculations (1980) J. Phys. C: Solid State Phys., 13, pp. 937-944 Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1992) Handbook of X-ray Photoelectron Spectroscopy, , Perkin-Elmer Corporation: Eden Prairie, MN Priyantha, W.A.A., Waddill, G.D., Cr2O3 thin films on Ag(111) by XPS (2006) Surf. Sci. Spectra, 13, pp. 94-99 Ünveren, E., Kemnitz, E., Hutton, S., Lippitz, A., Unger, W.E.S., Analysis of highly resolved x-ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape (2004) Surf. Interface Anal., 36, pp. 92-95 Maurice, V., Cadot, S., Marcus, P., XPS, LEED and STM study of thin oxide films formed on Cr(110) (2000) Surf. Sci., 458, pp. 195-215 Cheng, R., Xu, B., Borca, C.N., Sokolov, A., Yang, C.-S., Yuan, L., Liou, S.-H., Dowben, P.A., Characterization of the native Cr2O3 oxide surface of CrO2 (2001) Appl. Phys. Lett., 79, pp. 3122-3124 Rohr, R., Bäumer, M., Freund, H.J., Mejias, J.A., Staemmler, V., Müller, S., Hammer, L., Heinz, K., Erratum to: Strong relaxations a the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations [Surf. Sci. 372 (1997) L291] (1997) Surf. Sci., 389, p. 391 Bikondoa, O., Moritz, W., Torrelles, X., Kim, H.J., Thornton, G., Lindsay, R., Impact of ambient oxygen on the surface structure of α-Cr2O3(0001) (2010) Phys. Rev. B, 81, p. 205439 Kaspar, T.C., Chamberlin, S.E., Chambers, S.A., Surface structure of α-Cr2O3(0001) after activated oxygen exposure (2013) Surf. Sci., 618, pp. 159-166 Castegnaro, M.V., Kilian, A.S., Baibich, I.M., Alves, M.C.M., Morais, J., On the reactivity of carbon supported Pd nanoparticles during NO reduction: Unraveling a metal-support redox interaction (2013) Langmuir, 29, pp. 7125-7133 Kim, K.S., Gossmann, A.F., Winograd, N., X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode (1974) Anal. Chem., 46, pp. 197-200 Venezia, A.M., X-ray photoelectron spectroscopy (XPS) for catalysts characterization (2003) Catal. Today, 77, pp. 359-370 Pancotti, A., De Siervo, A., Carazzolle, M.F., Landers, R., Kleiman, G.G., The effect of alloying on shake-up satellites: The case of Pd in SbPd2 and InPd2 surface alloys (2007) J. Electron Spectrosc. Relat. Phenom., 156-158, pp. 307-309 Gupta, R.P., Lattice relaxation at a metal surface (1982) Phys. Rev. B, 23, pp. 6265-6270 Sinnott, S.B., Stave, M.S., Raeker, T.J., Depristo, A.E., Corrected effective-medium study of metal-surface relaxation (1991) Phys. Rev. B, 44, pp. 8927-8941 Rodriguez, A.M., Bozzolo, G., Ferrante, J., Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory (1993) Surf. Sci., 289, pp. 100-126 Ning, T., Yu, Q., Ye, Y., Multilayer relaxation at the surface of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al (1988) Surf. Sci., 206, pp. 857-863 Rodriguez, J.A., Goodman, D.W., Surface science studies of the electronic and chemical properties of bimetallic systems (1991) J. Phys. Chem., 95, pp. 4196-4206 Moroz, V., Lykhach, Y., Yoshitake, M., RHEED study of Pd film growth on Al2O3 (111)/NiAl (110) (2004) Thin Solid Films, 464-465, pp. 136-140 Qi-Hui, W., Petram, T., Becker, C., Wandelt, K., (2010) Deposition of Pd Nanoparticles on Ultrathin Al2O3 Films, pp. 17-20. , 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, Jan 20-23 IEEE: Xiamen, China Hansen, K.H., Worren, T., Stempel, S., Laegsgaard, E., Baumer, M., Freund, H.J., Besenbacher, F., Stensgaard, I., Palladium nanocrystals on Al2O3: Structure and adhesion energy (1999) Phys. Rev. Lett., 83, pp. 4120-4123 Petrosyan, S.A., Rigos, A.A., Arias, T.A., Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution (2005) J. Phys. Chem. B, 109, pp. 15436-15444 Costa, D., Garrain, P.A., Diawara, B., Marcus, P., Biomolecule-biomaterial interaction: A DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces (2011) Langmuir, 27, pp. 2747-2760 He, X., Wang, Y., Wu, N., Caruso, A.N., Vescovo, E., Belashchenko, K.D., Dowben, P.A., Binek, C., Robust isothermal electric control of exchange bias at room temperature (2010) Nat. Mater., 9, pp. 579-585 Wu, N., He, X., Wysocki, A.L., Lanke, U., Komesu, T., Belashchenko, K.D., Binek, C., Dowben, P.A., Imaging and control of surface magnetization domains in a magnetoelectric antiferromagnet (2011) Phys. Rev. Lett., 106, p. 087202 Echtenkamp, W., Binek, C., Electric control of exchange bias training (2013) Phys. Rev. Lett., 111, p. 187204 Fallarino, L., Berger, A., Binek, C., Giant temperature dependence of the spin reversal field in magnetoelectric chromia (2014) Appl. Phys. Lett., 104, p. 022403 Cline, J.A., Rigos, A.A., Arias, T.A., Ab initio study of magnetic structure and chemical reactivity of Cr2O3 and its (0001) surface (2000) J. Phys. Chem. B, 104, pp. 6195-6201