dc.creatorKilian A.S.
dc.creatorBernardi F.
dc.creatorPancotti A.
dc.creatorLanders R.
dc.creatorDe Siervo A.
dc.creatorMorais J.
dc.date2014
dc.date2015-06-25T17:55:17Z
dc.date2015-11-26T14:37:00Z
dc.date2015-06-25T17:55:17Z
dc.date2015-11-26T14:37:00Z
dc.date.accessioned2018-03-28T21:41:09Z
dc.date.available2018-03-28T21:41:09Z
dc.identifier
dc.identifierJournal Of Physical Chemistry C. American Chemical Society, v. 118, n. 35, p. 20452 - 20460, 2014.
dc.identifier19327447
dc.identifier10.1021/jp506507e
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84914129283&partnerID=40&md5=c64b85bd5db6b78f0e88438c0bbb5b1f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86793
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86793
dc.identifier2-s2.0-84914129283
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248972
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionA detailed investigation concerning the atomic structure of Cr2O3 and Pd/Cr2O3 ultrathin films deposited on a Ag(111) single crystal is presented. The films were prepared by MBE (molecular beam epitaxy) and characterized in situ by LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy), and XPD (X-ray photoelectron diffraction). Evidences of rotated domains and an oxygen-terminated Cr2O3/Ag(111) surface were observed, along with significant contractions of the oxides outermost interlayer distances. The deposition of Pd atoms on the Cr2O3 surface formed a four-monolayer film, fcc packed and oriented in the [111] direction, which presented changes in monolayer spacing and lateral atomic distance compared to the expected values for bulk Pd. The observed surface structure may shed light on new physical properties such as the induced magnetic ordering in Pd atoms.
dc.description118
dc.description35
dc.description20452
dc.description20460
dc.descriptionCAPES; São Paulo Research Foundation; FAPERGS; São Paulo Research Foundation; FAPESP; São Paulo Research Foundation
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWang, J., Scholl, A., Zheng, H., Ogale, S.B., Viehland, D., Schlom, D.G., Spaldin, N.A., Ramesh, R., Response to comment on epitaxial BiFeO3 multiferroic thin film heterostructures (2005) Science, 307, p. 1203
dc.descriptionChrysicopoulou, P., Davazoglou, D., Trapalis, C., Kordas, G., Optical properties of very thin (<100 nm) sol-gel TiO2 films (1998) Thin Solid Films, 323, pp. 188-193
dc.descriptionHardwick, D.A., The mechanical properties of thin films: A review (1987) Thin Solid Films, 154, pp. 109-124
dc.descriptionRao, R.A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., Tsui, F., Three-dimensional strain states and crystallographic domain structures of epitaxial colossal magnetoresistive La0.8Ca0.2MnO3 thin films (1998) Appl. Phys. Lett., 73, pp. 3294-3296
dc.descriptionWei, C.M., Chou, M.Y., Theory of quantum size effects in thin Pb(111) films (2002) Phys. Rev. B, 66, p. 233408
dc.descriptionWormeester, H., Hüger, E., Bauer, E., Hcp and bcc Cu and Pd Films (1996) Phys. Rev. Lett., 77, pp. 1540-1543
dc.descriptionDawber, M., Rabe, K.M., Scott, J.F., Physics of thin-film ferroelectric oxides (2005) Rev. Mod. Phys., 77, pp. 1083-1130
dc.descriptionLibuda, J., Freund, H.J., Molecular beam experiments on model catalysts (2005) Surf. Sci. Rep., 57, pp. 157-298
dc.descriptionStreet, S.C., Xu, C., Goodman, D.W., The physical and chemical properties of ultrathin oxide films (1997) Annu. Rev. Phys. Chem., 48, pp. 43-68
dc.descriptionChen, M.S., Goodman, D.W., Ultrathin, ordered oxide films on metal surfaces (2008) J. Phys.: Condens. Matter, 20, p. 264013
dc.descriptionWeckhuysen, B.M., Schoonheydt, R.A., Alkane dehydrogenation over supported chromium oxide catalysts (1999) Catal. Today, 51, pp. 223-232
dc.descriptionMarcilly, C., Delmon, B., The activity of true Cr2O3-Al2O3 solid solutions in dehydrogenation (1972) J. Catal., 24, pp. 336-347
dc.descriptionFlick, D.W., Huff, M.C., Oxidative dehydrogenation of ethane over supported chromium oxide and Pt modified chromium oxide (1999) Appl. Catal., A, 187, pp. 13-24
dc.descriptionWolter, K., Kuhlenbeck, H., Freund, H.J., Palladium deposits on a single crystalline Cr2O3(0001) surface (2002) J. Phys. Chem. B, 106, pp. 6723-6731
dc.descriptionLim, S.H., Murakami, M., Lofland, S.E., Zambano, A.J., Salamanca-Riba, L.G., Takeuchi, I., Exchange bias in thin-film (Co/Pt)3/Cr2O3 multilayers (2009) J. Magn. Magn. Mater., 321, pp. 1955-1958
dc.descriptionShiratsuchi, Y., Nakatani, T., Nakatani, R., Magnetic coupling at interface of ultrathin Co film and antiferromagnetic Cr2O3(0001) film (2009) J. Appl. Phys., 106, p. 033903
dc.descriptionPriyantha, W.A.A., Waddill, G.D., Structure of chromium oxide ultrathin films on Ag(111) (2005) Surf. Sci., 578, pp. 149-161
dc.descriptionPancotti, A., De Siervo, A., Carazzolle, M., Landers, R., Kleiman, G., Ordered oxide surfaces on metals: Chromium oxide (2011) Top. Catal., 54, pp. 90-96
dc.descriptionRohr, F., Bäumer, M., Freund, H.J., Mejias, J.A., Staemmler, V., Müller, S., Hammer, L., Heinz, K., Strong relaxations at the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations (1997) Surf. Sci., 372, pp. 291-297
dc.descriptionLubbe, M., Moritz, W., A LEED analysis of the clean surfaces of α-Fe2O3(0001) and α-Cr2O3(0001) bulk single crystals (2009) J. Phys.: Condens. Matter, 21, p. 134010
dc.descriptionWang, X.-G., Smith, J.R., Surface phase diagram for Cr2O3(0001): Ab initio density functional study (2003) Phys. Rev. B, 68, p. 201402
dc.descriptionSan Miguel, M.A., Álvarea, L.J., Fernández Sanz, J., Odriozola, J.A., Cr2O3 (0001) oxygen-terminating surface. A molecular dynamics study (1999) J. Mol. Struct.: THEOCHEM, 463, pp. 185-190
dc.descriptionNishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura, M., Okamoto, T., Hamada, N., Self-regeneration of a Pd-perovskite catalyst for automotive emissions control (2002) Nature, 418, pp. 164-167
dc.descriptionAmatore, C., Jutand, A., Mechanistic and kinetic studies of palladium catalytic systems (1999) J. Organomet. Chem., 576, pp. 254-278
dc.descriptionAstruc, D., Palladium catalysis using dendrimers: Molecular catalysts versus nanoparticles (2010) Tetrahedron: Asymmetry, 21, pp. 1041-1054
dc.descriptionTsuji, J., (2004) Palladium Reagents and Catalysts: New Perspectives for the 21st Century, , Wiley: West Sussex, U.K
dc.descriptionWerner, E.W., Sigman, M.S., A highly selective and general palladium catalyst for the oxidative Heck reaction of electronically nonbiased olefins (2010) J. Am. Chem. Soc., 132, pp. 13981-13983
dc.descriptionHardy, J.J.E., Hubert, S., Macquarrie, D.J., Wilson, A.J., Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions (2004) Green Chem., 6, pp. 53-56
dc.descriptionChinchilla, R., Nájera, C., The Sonogashira reaction: A booming methodology in synthetic organic chemistry (2007) Chem. Rev., 107, pp. 874-922
dc.descriptionHoveyda, A.H., Zhugralin, A.R., The remarkable metal-catalysed olefin metathesis reaction (2007) Nature, 450, pp. 243-251
dc.descriptionMethfessel, M., Hennig, D., Scheffler, M., Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals (1992) Phys. Rev. B, 46, pp. 4816-4829
dc.descriptionTrimble, T.M., Cammarata, R.C., Many-body effects on surface stress, surface energy and surface relaxation of fcc metals (2008) Surf. Sci., 602, pp. 2339-2347
dc.descriptionWan, J., Fan, Y.L., Gong, D.W., Shen, S.G., Fan, X.Q., Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb (1999) Modell. Simul. Mater. Sci. Eng., 7, pp. 189-206
dc.descriptionHüger, E., Osuch, K., Ferromagnetism in hexagonal close-packed Pd (2003) EPL, 63, pp. 90-96
dc.descriptionShinohara, T., Sato, T., Taniyama, T., Surface ferromagnetism of Pd fine particles (2003) Phys. Rev. Lett., 91, p. 197201
dc.descriptionHüger, E., Osuch, K., Pd bonded on Nb(001): Dependence of noble metal and ferromagnetic characteristics on film thickness (2005) Phys. Rev. B, 72, p. 085432
dc.descriptionDe Siervo, A., De Biasi, E., Garcia, F., Landers, R., Martins, M.D., Macedo, W.A.A., Surface structure determination of Pd ultrathin films on Ru(0001): Possible magnetic behavior (2007) Phys. Rev. B, 76, p. 075432
dc.descriptionDreiner, S., Schürmann, M., Westphal, C., Structural analysis of the SiO2/Si(100) interface by means of photoelectron diffraction (2004) Phys. Rev. Lett., 93, p. 126101
dc.descriptionWestphal, C., The study of the local atomic structure by means of X-ray photoelectron diffraction (2003) Surf. Sci. Rep., 50, pp. 1-106
dc.descriptionDe Lima, L.H., De Siervo, A., Landers, R., Viana, G.A., Goncalves, A.M.B., Lacerda, R.G., Häberle, P., Atomic surface structure of graphene and its buffer layer on SiC(0001): A chemical-specific photoelectron diffraction approach (2013) Phys. Rev. B, 87, p. 081403
dc.descriptionKuznetsov, M.V., Ogorodnikov, I.I., Vorokh, A.S., X-Ray photoelectron diffraction and photoelectron holography as methods for investigating the local atomic structure of the surface of solids (2014) Russ. Chem. Rev., 83, pp. 13-37
dc.descriptionRehr, J.J., Albers, R.C., Scattering-matrix formulation of curved-wave multiple-scattering theory: Application to x-ray-absorption fine structure (1990) Phys. Rev. B, 41, pp. 8139-8149
dc.descriptionChen, Y., García De Abajo, F.J., Chassé, A., Ynzunza, R.X., Kaduwela, A.P., Van Hove, M.A., Fadley, C.S., Convergence and reliability of the Rehr-Albers formalism in multiple-scattering calculations of photoelectron diffraction (1998) Phys. Rev. B, 58, p. 13121
dc.descriptionViana, M.L., Muino, R.D., Soares, E.A., Van Hove, M.A., De Carvalho, V.E., Global search in photoelectron diffraction structure determination using genetic algorithms (2007) J. Phys.: Condens. Matter, 19, pp. 1-14
dc.descriptionDe Siervo, A., Soares, E.A., Landers, R., Fazan, T.A., Morais, J., Kleiman, G.G., Pd on Cu(111) studied by photoelectron diffraction (2002) Surf. Sci., 504, pp. 215-222
dc.descriptionPendry, J.B., Reliability factors for LEED calculations (1980) J. Phys. C: Solid State Phys., 13, pp. 937-944
dc.descriptionMoulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1992) Handbook of X-ray Photoelectron Spectroscopy, , Perkin-Elmer Corporation: Eden Prairie, MN
dc.descriptionPriyantha, W.A.A., Waddill, G.D., Cr2O3 thin films on Ag(111) by XPS (2006) Surf. Sci. Spectra, 13, pp. 94-99
dc.descriptionÜnveren, E., Kemnitz, E., Hutton, S., Lippitz, A., Unger, W.E.S., Analysis of highly resolved x-ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape (2004) Surf. Interface Anal., 36, pp. 92-95
dc.descriptionMaurice, V., Cadot, S., Marcus, P., XPS, LEED and STM study of thin oxide films formed on Cr(110) (2000) Surf. Sci., 458, pp. 195-215
dc.descriptionCheng, R., Xu, B., Borca, C.N., Sokolov, A., Yang, C.-S., Yuan, L., Liou, S.-H., Dowben, P.A., Characterization of the native Cr2O3 oxide surface of CrO2 (2001) Appl. Phys. Lett., 79, pp. 3122-3124
dc.descriptionRohr, R., Bäumer, M., Freund, H.J., Mejias, J.A., Staemmler, V., Müller, S., Hammer, L., Heinz, K., Erratum to: Strong relaxations a the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations [Surf. Sci. 372 (1997) L291] (1997) Surf. Sci., 389, p. 391
dc.descriptionBikondoa, O., Moritz, W., Torrelles, X., Kim, H.J., Thornton, G., Lindsay, R., Impact of ambient oxygen on the surface structure of α-Cr2O3(0001) (2010) Phys. Rev. B, 81, p. 205439
dc.descriptionKaspar, T.C., Chamberlin, S.E., Chambers, S.A., Surface structure of α-Cr2O3(0001) after activated oxygen exposure (2013) Surf. Sci., 618, pp. 159-166
dc.descriptionCastegnaro, M.V., Kilian, A.S., Baibich, I.M., Alves, M.C.M., Morais, J., On the reactivity of carbon supported Pd nanoparticles during NO reduction: Unraveling a metal-support redox interaction (2013) Langmuir, 29, pp. 7125-7133
dc.descriptionKim, K.S., Gossmann, A.F., Winograd, N., X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode (1974) Anal. Chem., 46, pp. 197-200
dc.descriptionVenezia, A.M., X-ray photoelectron spectroscopy (XPS) for catalysts characterization (2003) Catal. Today, 77, pp. 359-370
dc.descriptionPancotti, A., De Siervo, A., Carazzolle, M.F., Landers, R., Kleiman, G.G., The effect of alloying on shake-up satellites: The case of Pd in SbPd2 and InPd2 surface alloys (2007) J. Electron Spectrosc. Relat. Phenom., 156-158, pp. 307-309
dc.descriptionGupta, R.P., Lattice relaxation at a metal surface (1982) Phys. Rev. B, 23, pp. 6265-6270
dc.descriptionSinnott, S.B., Stave, M.S., Raeker, T.J., Depristo, A.E., Corrected effective-medium study of metal-surface relaxation (1991) Phys. Rev. B, 44, pp. 8927-8941
dc.descriptionRodriguez, A.M., Bozzolo, G., Ferrante, J., Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory (1993) Surf. Sci., 289, pp. 100-126
dc.descriptionNing, T., Yu, Q., Ye, Y., Multilayer relaxation at the surface of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al (1988) Surf. Sci., 206, pp. 857-863
dc.descriptionRodriguez, J.A., Goodman, D.W., Surface science studies of the electronic and chemical properties of bimetallic systems (1991) J. Phys. Chem., 95, pp. 4196-4206
dc.descriptionMoroz, V., Lykhach, Y., Yoshitake, M., RHEED study of Pd film growth on Al2O3 (111)/NiAl (110) (2004) Thin Solid Films, 464-465, pp. 136-140
dc.descriptionQi-Hui, W., Petram, T., Becker, C., Wandelt, K., (2010) Deposition of Pd Nanoparticles on Ultrathin Al2O3 Films, pp. 17-20. , 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, Jan 20-23
dc.descriptionIEEE: Xiamen, China
dc.descriptionHansen, K.H., Worren, T., Stempel, S., Laegsgaard, E., Baumer, M., Freund, H.J., Besenbacher, F., Stensgaard, I., Palladium nanocrystals on Al2O3: Structure and adhesion energy (1999) Phys. Rev. Lett., 83, pp. 4120-4123
dc.descriptionPetrosyan, S.A., Rigos, A.A., Arias, T.A., Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution (2005) J. Phys. Chem. B, 109, pp. 15436-15444
dc.descriptionCosta, D., Garrain, P.A., Diawara, B., Marcus, P., Biomolecule-biomaterial interaction: A DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces (2011) Langmuir, 27, pp. 2747-2760
dc.descriptionHe, X., Wang, Y., Wu, N., Caruso, A.N., Vescovo, E., Belashchenko, K.D., Dowben, P.A., Binek, C., Robust isothermal electric control of exchange bias at room temperature (2010) Nat. Mater., 9, pp. 579-585
dc.descriptionWu, N., He, X., Wysocki, A.L., Lanke, U., Komesu, T., Belashchenko, K.D., Binek, C., Dowben, P.A., Imaging and control of surface magnetization domains in a magnetoelectric antiferromagnet (2011) Phys. Rev. Lett., 106, p. 087202
dc.descriptionEchtenkamp, W., Binek, C., Electric control of exchange bias training (2013) Phys. Rev. Lett., 111, p. 187204
dc.descriptionFallarino, L., Berger, A., Binek, C., Giant temperature dependence of the spin reversal field in magnetoelectric chromia (2014) Appl. Phys. Lett., 104, p. 022403
dc.descriptionCline, J.A., Rigos, A.A., Arias, T.A., Ab initio study of magnetic structure and chemical reactivity of Cr2O3 and its (0001) surface (2000) J. Phys. Chem. B, 104, pp. 6195-6201
dc.languageen
dc.publisherAmerican Chemical Society
dc.relationJournal of Physical Chemistry C
dc.rightsfechado
dc.sourceScopus
dc.titleAtomic Structure Of Cr2o3/ag(111) And Pd/cr2o3/ag(111) Surfaces: A Photoelectron Diffraction Investigation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución