Artículos de revistas
Generalised Chern-simons Theory And G2-instantons Over Associative Fibrations
Registro en:
Symmetry, Integrability And Geometry: Methods And Applications (sigma). Institute Of Mathematics, v. 10, n. , p. - , 2014.
18150659
10.3842/SIGMA.2014.083
2-s2.0-84907328156
Autor
Saearp H.N.
Institución
Resumen
Adjusting conventional Chern-Simons theory to G2-manifolds, one describes G2-instantons on bundles over a certain class of 7-dimensional flat tori which fiber nontrivially over T4, by a pullback argument. Moreover, if c2 ≠ 0, any (generic) deformation of the G2-structure away from such a fibred structure causes all instantons to vanish. A brief investigation in the general context of (conformally compatible) associative fibrations f:Y7 → X4 relates G2-instantons on pullback bundles f*E → Y and self-dual connections on the bundle E → X over the base, a fact which may be of independent interest. 10
Bryant, R.L., Metrics with holonomy G2 or Spin(7) (1985) Lecture Notes In Math, 1111, pp. 269-277. , Springer, Berlin Clarke, A., Instantons On the Exceptional Holonomy Manifolds of Bryant and Salamon, , arXiv:1308.6358 Donaldson, S.K., Floer homology groups in Yang-Mills theory (2002) Cambridge Tracts In Mathematics, 147. , Cambridge University Press, Cambridge Donaldson, S.K., Thomas, R.P., Gauge theory in higher dimensions (1998) The Geometric Universe, pp. 31-47. , Oxford, 1996, Oxford University Press, Oxford Harland, D., Ivanova, T.A., Lechtenfeld, O., Popov, A.D., Yang-Mills flows on nearly Kähler manifolds and G2-instantons (2010) Comm. Math. Phys, 300, pp. 185-204. , arXiv:0909.2730 Harvey, R., Lawson, H.B., Calibrated geometries (1982) Acta Math, 148, pp. 47-157 Ivanova, T.A., Popov, A.D., Instantons on special holonomy manifolds (2012) Phys. Rev. D, 85, p. 105012. , 10 pages, arXiv:1203.2657 Joyce, D.D., (2000) Compact Manifolds With Special Holonomy, Oxford Mathematical Monographs, , Oxford University Press, Oxford McLean, R.C., Deformations of calibrated submanifolds (1998) Comm. Anal. Geom, 6, pp. 705-747 Milnor, J.W., Stasheff, J.D., (1974) Characteristic Classes, , Princeton University Press, Princeton, N.J Sáearp, H.N., (2009) Instantons On G2-manifolds, , Ph.D. Thesis, Imperial College London Sáearp, H.N., G2-instantons over asymptotically cylindrical manifolds Geom. Topol, , to appear, arXiv:1101.0880 Sáearp, H.N., Walpuski, T., G2-instantons on twisted connected sums, Geom Topol, , to appear, arXiv:1310.7933 Salamon, S., Riemannian geometry and holonomy groups (1989) Pitman Research Notes In Mathematics Series, 201. , Longman Scientific & Technical, Harlow Thomas, R.P., (1997) Gauge Theory On Calabi-Yau Manifolds, , Ph.D. Thesis, Oxford University Tian, G., Gauge theory and calibrated geometry, I (2000) Ann. of Math, 151, pp. 193-268. , math.DG/0010015 Walpuski, T., G2-instantons on generalised Kummer constructions (2013) Geom. Topol, 17, pp. 2345-2388. , arXiv:1109.6609 Wang, S., A higher dimensional foliated Donaldson theory, I Asian J. Math, , to appear, arXiv:1212.6774