dc.creatorSaearp H.N.
dc.date2014
dc.date2015-06-25T17:54:32Z
dc.date2015-11-26T14:34:38Z
dc.date2015-06-25T17:54:32Z
dc.date2015-11-26T14:34:38Z
dc.date.accessioned2018-03-28T21:38:03Z
dc.date.available2018-03-28T21:38:03Z
dc.identifier
dc.identifierSymmetry, Integrability And Geometry: Methods And Applications (sigma). Institute Of Mathematics, v. 10, n. , p. - , 2014.
dc.identifier18150659
dc.identifier10.3842/SIGMA.2014.083
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84907328156&partnerID=40&md5=8e6587e2521c5c7220abdd2c6bbb2244
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86706
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86706
dc.identifier2-s2.0-84907328156
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248161
dc.descriptionAdjusting conventional Chern-Simons theory to G2-manifolds, one describes G2-instantons on bundles over a certain class of 7-dimensional flat tori which fiber nontrivially over T4, by a pullback argument. Moreover, if c2 ≠ 0, any (generic) deformation of the G2-structure away from such a fibred structure causes all instantons to vanish. A brief investigation in the general context of (conformally compatible) associative fibrations f:Y7 → X4 relates G2-instantons on pullback bundles f*E → Y and self-dual connections on the bundle E → X over the base, a fact which may be of independent interest.
dc.description10
dc.description
dc.description
dc.description
dc.descriptionBryant, R.L., Metrics with holonomy G2 or Spin(7) (1985) Lecture Notes In Math, 1111, pp. 269-277. , Springer, Berlin
dc.descriptionClarke, A., Instantons On the Exceptional Holonomy Manifolds of Bryant and Salamon, , arXiv:1308.6358
dc.descriptionDonaldson, S.K., Floer homology groups in Yang-Mills theory (2002) Cambridge Tracts In Mathematics, 147. , Cambridge University Press, Cambridge
dc.descriptionDonaldson, S.K., Thomas, R.P., Gauge theory in higher dimensions (1998) The Geometric Universe, pp. 31-47. , Oxford, 1996, Oxford University Press, Oxford
dc.descriptionHarland, D., Ivanova, T.A., Lechtenfeld, O., Popov, A.D., Yang-Mills flows on nearly Kähler manifolds and G2-instantons (2010) Comm. Math. Phys, 300, pp. 185-204. , arXiv:0909.2730
dc.descriptionHarvey, R., Lawson, H.B., Calibrated geometries (1982) Acta Math, 148, pp. 47-157
dc.descriptionIvanova, T.A., Popov, A.D., Instantons on special holonomy manifolds (2012) Phys. Rev. D, 85, p. 105012. , 10 pages, arXiv:1203.2657
dc.descriptionJoyce, D.D., (2000) Compact Manifolds With Special Holonomy, Oxford Mathematical Monographs, , Oxford University Press, Oxford
dc.descriptionMcLean, R.C., Deformations of calibrated submanifolds (1998) Comm. Anal. Geom, 6, pp. 705-747
dc.descriptionMilnor, J.W., Stasheff, J.D., (1974) Characteristic Classes, , Princeton University Press, Princeton, N.J
dc.descriptionSáearp, H.N., (2009) Instantons On G2-manifolds, , Ph.D. Thesis, Imperial College London
dc.descriptionSáearp, H.N., G2-instantons over asymptotically cylindrical manifolds Geom. Topol, , to appear, arXiv:1101.0880
dc.descriptionSáearp, H.N., Walpuski, T., G2-instantons on twisted connected sums, Geom Topol, , to appear, arXiv:1310.7933
dc.descriptionSalamon, S., Riemannian geometry and holonomy groups (1989) Pitman Research Notes In Mathematics Series, 201. , Longman Scientific & Technical, Harlow
dc.descriptionThomas, R.P., (1997) Gauge Theory On Calabi-Yau Manifolds, , Ph.D. Thesis, Oxford University
dc.descriptionTian, G., Gauge theory and calibrated geometry, I (2000) Ann. of Math, 151, pp. 193-268. , math.DG/0010015
dc.descriptionWalpuski, T., G2-instantons on generalised Kummer constructions (2013) Geom. Topol, 17, pp. 2345-2388. , arXiv:1109.6609
dc.descriptionWang, S., A higher dimensional foliated Donaldson theory, I Asian J. Math, , to appear, arXiv:1212.6774
dc.languageen
dc.publisherInstitute of Mathematics
dc.relationSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
dc.rightsfechado
dc.sourceScopus
dc.titleGeneralised Chern-simons Theory And G2-instantons Over Associative Fibrations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución