Artículos de revistas
Microfluidic Paper-based Devices For Bioanalytical Applications
Registro en:
Bioanalysis. , v. 6, n. 1, p. 89 - 106, 2014.
17576180
10.4155/bio.13.296
2-s2.0-84890963567
Autor
Santhiago M.
Nery E.W.
Santos G.P.
Kubota L.T.
Institución
Resumen
Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed. © 2014 Future Science Ltd. 6 1 89 106 Bier, F.F., Schumacher, S., Integration in bioanalysis: Technologies for point-of-care testing (2013) Adv. Biochem. Eng. Biotechnol., 133, pp. 1-14 Gubala, V., Harris, L.F., Ricco, A.J., Point of care diagnostics: Status and future (2012) Anal. Chem., 84 (2), pp. 487-515 Warsinke, A., Point-of-care testing of proteins (2009) Anal. Bioanal. Chem., 393 (5), pp. 1393-1405 Whitesides, G.M., The origins and the future of microfluidics (2006) Nature, 442 (7107), pp. 368-373 Figeys, D., Pinto, D., Lab-on-a-chip: A revolution in biological and medical sciences (2000) Anal. Chem., 72 (9), pp. 330A-335A Harrison, D.J., Fluri, K., Seiler, K., Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip (1993) Science, 261 (5123), pp. 895-897 Effenahuser, C., Manz, A., Widmer, H.M., Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights (1993) Anal. Chem., 65 (19), pp. 2637-2642 Duffy, D.C., McDonald, J.C., Oja, S., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) (1998) Anal. Chem., 70 (23), pp. 4974-4984 Mao, X., Huang, T.J., Microfluidic diagnostics for the developing world (2012) Lab Chip, 12 (8), pp. 1412-1416 Li, X., Ballerini, D.R., Shen, W., A perspective on paper-based microfluidics: Current status and future trends (2012) Biomicrofluidics, 6 (1), p. 011301 Ge, S., Ge, L., Yan, M., A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification (2013) Biosens. Bioelectron., 43, pp. 425-431 Sameenoi, Y., Panymeesamer, P., Supalakorn, N., Microfluidic paper-based analytical device for aerosol oxidative (2013) Environ. Sci. Technol., 47 (2), pp. 932-940 Aml, M., Pons, J., Blake, D.A., All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters (2013) Anal. Chem., 85 (7), pp. 3532-3538 Anfossi, L., Baggiani, C., Giovannoli, C., Optimization of a lateral flow immunoassay for the ultrasensitive detection of aflatoxin M1 in milk (2013) Anal. Chim. Acta, 772, pp. 75-80 Linares, E.M., Pannuti, C.S., Kubota, L.T., Immunospot assay based on fluorescent nanoparticles for Dengue fever detection (2013) Biosens. Bioelectron., 41, pp. 180-185 López, A.M., Pons, J., Blake, D.A., High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters (2013) Biosens. Bioelectron., 47, pp. 190-198 Kouisni, L., Rochefort, D., Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates (2009) J. Appl. Polym. Sci., 111 (1), pp. 1-10 Couderc, S., Ducloux, O., Kim, B.J., A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet (2009) J. Micromech. Microeng., 19 (5), p. 055006 Noh, H., Phillips, S.T., Fluidic timers for time-dependent, point-of-care assays on paper (2010) Anal. Chem., 82 (19), pp. 8071-8078 Parolo, C., Merkoçi, A., Paper-based nanobiosensors for diagnostics (2013) Chem. Soc. Rev., 42 (2), pp. 450-457 Shah, P., Zhu, X., Li, C., Development of a paper-based analytical kit for point-of-care testing (2013) Expert Rev. Mol. Diagn., 13 (1), pp. 83-91 Maxwell, E.J., Mazzeo, A.D., Whitesides, G.M., Paper-based electroanalytical devices for accessible diagnostic testing (2013) MRS Bull., 38 (4), pp. 309-314 Pelton, R., Bioactive paper provides a low-cost platform for diagnostics (2009) Trends Analyt. Chem., 28 (8), pp. 925-942 Luppa, P.B., Müller, C., Chlichtiger, A., Point-of-care testing (POCT): Current techniques and future perspectives (2011) Trends Analyt. Chem., 30 (6), pp. 887-898 Shiroma, L.Y., Santhiago, M., Gobbi, A.L., Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device (2012) Anal. Chim. Acta, 725, pp. 44-50 Bostock, J., Riley, H.T., (1855) Natural History, , Pliny, Elder. Book XIII 21. The Papyrus: The use of paper: when it was first invented, Book XXXIV, 26. Verdigris Eighteen remedies Taylor and Francis, London, UK Morgan, E.D., Wilson, I.D., An early description of paper chromatography (2004) Chromatographia, 60 (1-2), pp. 135-136 Crosland, M., (1978) Gay-Lussac Scientist and Bourgeois, , Cambridge University Press, Cambridge, UK Weil, H., The evolution of paper chromatography, 1. Radial paper chromatography (1953) Colloid Polym. Sci., 132 (2-3), pp. 149-162 Rocco, R.M., Landmark papers in clinical chemistry (2006) Elsevier Science, pp. 323-324. , Amsterdam, Holland Yagoda, H., Applications of confined spot tests in analytical chemistry (1937) Ind. Eng. Chem. Res., 9 (2), pp. 79-82 Muller, R.H., Clegg, D.L., Automatic paper chromatography (1949) Anal. Chem., 21 (9), pp. 1123-1125 Kunkel, H.G., Tiselius, A., Andersen, O.S., Electrophoresis of proteins on filter paper (1951) J. Gen. Physiol., 35 (1), pp. 89-118 Davies, R.J., Eapen, S.S., Carlisle, S.J., Chapter 74. Lateral-flow Immunochromatographic Assays (2002) Handbook on Biosensors and Biochips, , Wiley, NJ, USA, 1 Martinez, A.W., Phillips, S.T., Butte, M.J., Patterned paper as a platform for inexpensive, low-volume, portable bioassays (2007) Angew. Chem. Int. Ed., 46 (8), pp. 1318-1320 Dungchai, W., Chailapakul, O., Henry, C.S., A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing (2011) Analyst, 136 (1), pp. 77-82 Abe, K., Suzuki, K., Citterio, D., Inkjet-printed microfluidic multianalyte chemical sensing paper (2008) Anal. Chem., 80 (18), pp. 6928-6934 Li, X., Tian, J., Garnier, G., Fabrication of paper-based microfluidic sensors by printing (2010) Colloids Surf. B Biointerfaces, 56 (2), pp. 564-570 Songjaroen, T., Dungchai, W., Chailapakul, O., Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping (2011) Talanta, 85 (5), pp. 2587-2593 Nurak, T., Praphairaksit, N., Chailapakul, O., Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water (2013) Talanta, 114, pp. 291-296 Nie, J., Zhang, Y., Lin, L., Low-cost fabrication of paper-based microfluidic devices by one-step plotting (2012) Anal. Chem., 84 (15), pp. 6331-6335 Martinez, A.W., Phillips, S.T., Wiley, B.J., FLASH: A rapid method for prototyping paper-based microfluidic devices (2008) Lab Chip, 8 (12), pp. 2146-2150 Carrilho, E., Martinez, A.W., Whitesides, G.M., Understanding wax printing: A simple micropatterning process for paper-based microfluidics (2009) Anal. Chem., 81 (16), pp. 7091-7095 Chitnis, G., Ding, Z., Chang, C., Laser-treated hydrophobic paper: An inexpensive microfluidic platform (2011) Lab Chip, 11 (6), pp. 1161-1165 Lu, Y., Lin, B., Qin, J., Patterned paper as a low-cost, flexible substrate for rapid prototyping of pdms microdevices via 'liquid molding' Anal. Chem., 83 (5), pp. 1830-1835 Olkkonen, J., Lehtinen, K., Erho, T., Flexographically printed fluidic structures in paper (2010) Anal. Chem., 82 (24), pp. 10246-10250 Cheng, C., Martinez, A.W., Gong, J., Paper-based ELISA (2010) Angew. Chem. Int. Ed., 49 (28), pp. 4771-4774 Li, X., Tian, J., Nguyen, T., Paper-based microfluidic devices by plasma treatment (2008) Anal. Chem., 80 (23), pp. 9131-9134 Li, X., Tian, J., Shen, W., Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors (2010) Cellulose, 17 (3), pp. 649-659 Nie, J., Liang, Y., Zhang, Y., One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices (2013) Analyst, 138 (2), pp. 671-676 Fu, E., Ramsey, S.A., Kauffman, P., Transport in two-dimensional paper networks (2011) Microfluid Nanofluid., 10 (1), pp. 29-35 Washburn, E.W., The dynamics of capillary flow (1921) Phys. Rev., 17 (3), pp. 273-283 Nery, E.W., Kubota, L.T., Sensing approaches on paper-based devices: A review (2013) Anal. Bioanal. Chem., 405 (24), pp. 7573-7595 Ramasamy, S.M., Hurtubise, R.J., Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper (1998) Talanta, 47 (4), pp. 971-979 Smz, H., Ozimok, C., Sicard, C., Multiplexed paper test strip for quantitative bacterial detection (2012) Anal. Bioanal. Chem., 403 (6), pp. 1567-1576 Cha, R., Wang, D., He, Z., Development of cellulose paper testing strips for quick measurement of glucose using chromogen agent (2012) Carbohydr. Polym., 88 (4), pp. 1414-1419 Mentele, M.M., Cunningham, J., Koehler, K., Microfluidic paper-based analytical device for particulate metals (2012) Anal. Chem., 84 (10), pp. 4474-4480 Parolo, C., Medina-Sánchez, M., Escosura-Muñiza, A., Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassay (2013) Lab Chip, 13 (3), pp. 386-390 Abbas, A., Brimer, A., Slocik, J.M., Multifunctional analytical platform on a paper strip: Separation, preconcentration, and subattomolar detection (2013) Anal. Chem., 85 (8), pp. 3977-3983 Sochol, R.D., Li, S., Lee, L.P., Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing (2012) Lab Chip, 12 (20), pp. 4168-4177 Li, X., Zwanenburg, P., Liu, X., Magnetic timing valves for fluid control in paper-based microfluidics (2013) Lab Chip, 13 (13), pp. 2609-2614 Chen, H., Cogswell, J., Anagnostopoulos, C., A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper (2012) Lab Chip, 12 (16), pp. 2909-2913 Lutz, B., Liang, T., Fu, E., Dissolvable fluidic time delays for programming multistep assays in instrument-free paper diagnostics (2013) Lab Chip, 13 (14), pp. 2840-2847 Jahanshahi-Anbuhi, S., Chavan, P., Sicard, C., Creating fast flow channels in paper fluidic devices to control timing of sequential reactions (2012) Lab Chip, 12 (23), pp. 5079-5085 Funes-Huacca, M.M., Wu, A., Szepesvari, E., Portable self-contained cultures for phage and bacteria made of paper and tape (2012) Lab Chip, 12 (21), pp. 4269-4278 Jokerst, J.C., Adkins, J., Bisha, B., Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens (2012) Anal. Chem., 84 (6), pp. 2900-2907 Derda, R., Laromaine, A., Mammoto, A., Paper-supported 3D cell culture for tissue-based bioassays (2009) Proc. Natl Acad. Sci. USA, 106 (44), pp. 18457-18462 Rsj, A., Ornatska, M., Andreescu, S., Colorimetric paper bioassay for the detection of phenolic compounds (2012) Anal. Chem., 84 (22), pp. 9729-9737 Lewis, G.G., Ditucci, M.J., Phillips, S.T., Quantifying analytes in paper-based microfluidic devices without using external electronic readers (2012) Angew. Chem. Int. Ed., 51 (51), pp. 12707-12710 Cate, D.M., Dungchai, W., Cunningham, J.C., Simple, distance-based measurement for paper analytical devices (2013) Lab Chip, 13 (12), pp. 2397-2404 Weaver, A.A., Reiser, H., Barstis, T., Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals (2013) Anal. Chem., 85 (13), pp. 6453-6460 Dungchai, W., Chailapakul, O., Henry, C.S., Electrochemical detection for paper-based microfluidics (2009) Anal. Chem., 81 (14), pp. 5821-5826 Nie, Z., Deiss, F., Liu, X., Integration of paper-based microfluidic devices with commercial electrochemical readers (2010) Lab Chip, 10 (22), pp. 3163-3169 Parolo, C., Medina-Sánchez, M., Montón, H., Paper-based electrodes for nanoparticles detection (2013) Part. Part. Syst. Charact., 30 (8), pp. 662-666 Apilux, A., Dungchai, W., Siangproh, W., Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron (2010) Anal. Chem., 82 (5), pp. 1727-1732 Santhiago, M., Kubota, L.T., A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes (2013) Sens. Actuators B Chem., 177, pp. 224-230 Carvalhal, R.F., Kfouri, M.S., Mho, P., Electrochemical detection in a paper-based separation device (2010) Anal. Chem., 82 (3), pp. 1162-1165 Kurra, N., Kulkarni, G.U., Pencil-on-paper: Electronic devices (2013) Lab Chip, 13 (15), pp. 2866-2873 Santhiago, M., Wydallis, J.B., Kubota, L.T., Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices (2013) Anal. Chem., 85 (10), pp. 5233-5239 Liana, D.D., Raguse, B., Wieczorek, L., Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors (2013) RSC Adv., 3 (23), pp. 8683-8691 Noiphung, J., Songjaroen, T., Dungchai, W., Electrochemical detection of glucose from whole blood using paper-based microfluidic devices (2013) Anal. Chim. Acta, 788, pp. 39-45 Dossi, N., Toniolo, R., Pizzariallo, A., Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices (2013) Electrophoresis, 34 (14), pp. 2085-2091 Yetisen, A.K., Akram, M.S., Lowe, C.R., Paper-based microfluidic point-of-care diagnostic devices (2013) Lab Chip, 13 (12), pp. 2210-2251 Sharma, P.S., D'Souza, S., Kutner, W., Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse (2012) Trends Analyt. Chem., 34, pp. 59-77 Ge, L., Wang, S., Yu, J., Molecularly imprinted polymer grafted porous au-paper electrode for an microfluidic electro-analytical origami device (2013) Adv. Funct. Mater., 23 (24), pp. 3115-3123 Martinez, A.W., Phillips, S.T., Carrilho, E., Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis (2008) Anal. Chem., 80 (10), pp. 3699-3707 Oncescu, V., O'Dell, D., Erickson, D., Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva (2013) Lab Chip, 13 (16), pp. 3232-3238 Delaney, J.L., Doeven, E.H., Harsant, A.J., Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors (2013) Anal. Chim. Acta, 790, pp. 56-60 Yu, J., Wang, S., Ge, L., A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination (2011) Biosens. Bioelectron., 26 (7), pp. 3284-3289 Wang, S., Ge, L., Li, L., Moleculary imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide (2013) Biosens. Bioelectron., 50, pp. 262-268 Wang, S., Ge, L., Song, X., Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax screen-printing (2012) Biosens. Bioelectron., 31 (1), pp. 212-218 Ge, L., Wang, S., Song, X., 3D Origami-based multifunction-integrated immunodevice: Low cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device (2012) Lab Chip, 12 (17), pp. 3150-3158 Li, W., Li, L., Ge, S., A 3D origami multiple electrochemiluminescence immunodevice based on a porous silver-paper electrode and multi-labeled nanoporous gold-carbon spheres (2013) Chem. Commun., 49 (17), pp. 7687-7689 Xu, Y., Lou, B., Lv, Z., Paper-based solid-state electrochemiluminescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion composite film (2013) Anal. Chim. Acta, 763, pp. 20-27 Liu, W., Cassano, C.L., Xu, X., Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum (2013) Anal. Chem., 85 (21), pp. 10270-10276 Li, W., Li, M., Ge, S., Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy (2013) Anal. Chim. Acta, 767, pp. 66-74 Yan, J., Yan, M., Ge, L., A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative (2013) Chem. Commun., 49 (14), pp. 1383-1385 Zhang, X., Li, J., Chen, C., A self-powered microfluidic origami electrochemiluminescence biosensing platform (2013) Chem. Commun., 49 (37), pp. 3866-3868 Ge, L., Wang, P., Ge, S., Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source (2013) Anal. Chem., 85 (8), pp. 3961-3970 Wang, P., Ge, L., Ge, S., A paper-based photoelectrochemical immunoassay for low-cost and multiplexed point-of-care testing (2013) Chem. Commun., 49 (32), pp. 3294-3296 Lee, J., Kim, J.H., Lee, S.H., In-situ on-fabric one-touch colorimetric detection using aptamer-conjugated gold nanoparticles (2013) BioChip J., 7 (2), pp. 180-187 Guinovart, T., Parrilla, M., Crespo, G.A., Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes (2013) Analyst, 138 (18), pp. 5208-5215 Chin, C.D., Linder, V., Sia, S.K., Commercialization of microfluidic point-of-care diagnostic devices (2012) Lab Chip, 12 (12), pp. 2118-2134 Wang, W., Wu, W.-Y., Wang, W., Zhu, J.-J., Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration (2010) J. Chrom. A, 1217 (24), pp. 3896-3899 Yu, J., Ge, L., Huang, J., Wang, S., Ge S.Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid (2011) Lab Chip, 11 (7), pp. 1286-1291 Carl Schleicher & Schull Co.: US2129754 (1938)Chemtrak, Inc.: US5409664 (1995)Diamatrix Limited: US6573108 (2003)www.labonfoil.eu, LABONFOIL Integrated Projectwww.epiloglaser.com/tl_power_consumption.htm, Epilog Laser