dc.creator | Santhiago M. | |
dc.creator | Nery E.W. | |
dc.creator | Santos G.P. | |
dc.creator | Kubota L.T. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:54:16Z | |
dc.date | 2015-11-26T14:31:50Z | |
dc.date | 2015-06-25T17:54:16Z | |
dc.date | 2015-11-26T14:31:50Z | |
dc.date.accessioned | 2018-03-28T21:35:12Z | |
dc.date.available | 2018-03-28T21:35:12Z | |
dc.identifier | | |
dc.identifier | Bioanalysis. , v. 6, n. 1, p. 89 - 106, 2014. | |
dc.identifier | 17576180 | |
dc.identifier | 10.4155/bio.13.296 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84890963567&partnerID=40&md5=e673130778e8dd67b55e023fdc28510e | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86644 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86644 | |
dc.identifier | 2-s2.0-84890963567 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1247462 | |
dc.description | Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed. © 2014 Future Science Ltd. | |
dc.description | 6 | |
dc.description | 1 | |
dc.description | 89 | |
dc.description | 106 | |
dc.description | Bier, F.F., Schumacher, S., Integration in bioanalysis: Technologies for point-of-care testing (2013) Adv. Biochem. Eng. Biotechnol., 133, pp. 1-14 | |
dc.description | Gubala, V., Harris, L.F., Ricco, A.J., Point of care diagnostics: Status and future (2012) Anal. Chem., 84 (2), pp. 487-515 | |
dc.description | Warsinke, A., Point-of-care testing of proteins (2009) Anal. Bioanal. Chem., 393 (5), pp. 1393-1405 | |
dc.description | Whitesides, G.M., The origins and the future of microfluidics (2006) Nature, 442 (7107), pp. 368-373 | |
dc.description | Figeys, D., Pinto, D., Lab-on-a-chip: A revolution in biological and medical sciences (2000) Anal. Chem., 72 (9), pp. 330A-335A | |
dc.description | Harrison, D.J., Fluri, K., Seiler, K., Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip (1993) Science, 261 (5123), pp. 895-897 | |
dc.description | Effenahuser, C., Manz, A., Widmer, H.M., Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights (1993) Anal. Chem., 65 (19), pp. 2637-2642 | |
dc.description | Duffy, D.C., McDonald, J.C., Oja, S., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) (1998) Anal. Chem., 70 (23), pp. 4974-4984 | |
dc.description | Mao, X., Huang, T.J., Microfluidic diagnostics for the developing world (2012) Lab Chip, 12 (8), pp. 1412-1416 | |
dc.description | Li, X., Ballerini, D.R., Shen, W., A perspective on paper-based microfluidics: Current status and future trends (2012) Biomicrofluidics, 6 (1), p. 011301 | |
dc.description | Ge, S., Ge, L., Yan, M., A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification (2013) Biosens. Bioelectron., 43, pp. 425-431 | |
dc.description | Sameenoi, Y., Panymeesamer, P., Supalakorn, N., Microfluidic paper-based analytical device for aerosol oxidative (2013) Environ. Sci. Technol., 47 (2), pp. 932-940 | |
dc.description | Aml, M., Pons, J., Blake, D.A., All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters (2013) Anal. Chem., 85 (7), pp. 3532-3538 | |
dc.description | Anfossi, L., Baggiani, C., Giovannoli, C., Optimization of a lateral flow immunoassay for the ultrasensitive detection of aflatoxin M1 in milk (2013) Anal. Chim. Acta, 772, pp. 75-80 | |
dc.description | Linares, E.M., Pannuti, C.S., Kubota, L.T., Immunospot assay based on fluorescent nanoparticles for Dengue fever detection (2013) Biosens. Bioelectron., 41, pp. 180-185 | |
dc.description | López, A.M., Pons, J., Blake, D.A., High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters (2013) Biosens. Bioelectron., 47, pp. 190-198 | |
dc.description | Kouisni, L., Rochefort, D., Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates (2009) J. Appl. Polym. Sci., 111 (1), pp. 1-10 | |
dc.description | Couderc, S., Ducloux, O., Kim, B.J., A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet (2009) J. Micromech. Microeng., 19 (5), p. 055006 | |
dc.description | Noh, H., Phillips, S.T., Fluidic timers for time-dependent, point-of-care assays on paper (2010) Anal. Chem., 82 (19), pp. 8071-8078 | |
dc.description | Parolo, C., Merkoçi, A., Paper-based nanobiosensors for diagnostics (2013) Chem. Soc. Rev., 42 (2), pp. 450-457 | |
dc.description | Shah, P., Zhu, X., Li, C., Development of a paper-based analytical kit for point-of-care testing (2013) Expert Rev. Mol. Diagn., 13 (1), pp. 83-91 | |
dc.description | Maxwell, E.J., Mazzeo, A.D., Whitesides, G.M., Paper-based electroanalytical devices for accessible diagnostic testing (2013) MRS Bull., 38 (4), pp. 309-314 | |
dc.description | Pelton, R., Bioactive paper provides a low-cost platform for diagnostics (2009) Trends Analyt. Chem., 28 (8), pp. 925-942 | |
dc.description | Luppa, P.B., Müller, C., Chlichtiger, A., Point-of-care testing (POCT): Current techniques and future perspectives (2011) Trends Analyt. Chem., 30 (6), pp. 887-898 | |
dc.description | Shiroma, L.Y., Santhiago, M., Gobbi, A.L., Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device (2012) Anal. Chim. Acta, 725, pp. 44-50 | |
dc.description | Bostock, J., Riley, H.T., (1855) Natural History, , Pliny, Elder. Book XIII 21. The Papyrus: The use of paper: when it was first invented, Book XXXIV, 26. Verdigris | |
dc.description | Eighteen remedies Taylor and Francis, London, UK | |
dc.description | Morgan, E.D., Wilson, I.D., An early description of paper chromatography (2004) Chromatographia, 60 (1-2), pp. 135-136 | |
dc.description | Crosland, M., (1978) Gay-Lussac Scientist and Bourgeois, , Cambridge University Press, Cambridge, UK | |
dc.description | Weil, H., The evolution of paper chromatography, 1. Radial paper chromatography (1953) Colloid Polym. Sci., 132 (2-3), pp. 149-162 | |
dc.description | Rocco, R.M., Landmark papers in clinical chemistry (2006) Elsevier Science, pp. 323-324. , Amsterdam, Holland | |
dc.description | Yagoda, H., Applications of confined spot tests in analytical chemistry (1937) Ind. Eng. Chem. Res., 9 (2), pp. 79-82 | |
dc.description | Muller, R.H., Clegg, D.L., Automatic paper chromatography (1949) Anal. Chem., 21 (9), pp. 1123-1125 | |
dc.description | Kunkel, H.G., Tiselius, A., Andersen, O.S., Electrophoresis of proteins on filter paper (1951) J. Gen. Physiol., 35 (1), pp. 89-118 | |
dc.description | Davies, R.J., Eapen, S.S., Carlisle, S.J., Chapter 74. Lateral-flow Immunochromatographic Assays (2002) Handbook on Biosensors and Biochips, , Wiley, NJ, USA, 1 | |
dc.description | Martinez, A.W., Phillips, S.T., Butte, M.J., Patterned paper as a platform for inexpensive, low-volume, portable bioassays (2007) Angew. Chem. Int. Ed., 46 (8), pp. 1318-1320 | |
dc.description | Dungchai, W., Chailapakul, O., Henry, C.S., A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing (2011) Analyst, 136 (1), pp. 77-82 | |
dc.description | Abe, K., Suzuki, K., Citterio, D., Inkjet-printed microfluidic multianalyte chemical sensing paper (2008) Anal. Chem., 80 (18), pp. 6928-6934 | |
dc.description | Li, X., Tian, J., Garnier, G., Fabrication of paper-based microfluidic sensors by printing (2010) Colloids Surf. B Biointerfaces, 56 (2), pp. 564-570 | |
dc.description | Songjaroen, T., Dungchai, W., Chailapakul, O., Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping (2011) Talanta, 85 (5), pp. 2587-2593 | |
dc.description | Nurak, T., Praphairaksit, N., Chailapakul, O., Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water (2013) Talanta, 114, pp. 291-296 | |
dc.description | Nie, J., Zhang, Y., Lin, L., Low-cost fabrication of paper-based microfluidic devices by one-step plotting (2012) Anal. Chem., 84 (15), pp. 6331-6335 | |
dc.description | Martinez, A.W., Phillips, S.T., Wiley, B.J., FLASH: A rapid method for prototyping paper-based microfluidic devices (2008) Lab Chip, 8 (12), pp. 2146-2150 | |
dc.description | Carrilho, E., Martinez, A.W., Whitesides, G.M., Understanding wax printing: A simple micropatterning process for paper-based microfluidics (2009) Anal. Chem., 81 (16), pp. 7091-7095 | |
dc.description | Chitnis, G., Ding, Z., Chang, C., Laser-treated hydrophobic paper: An inexpensive microfluidic platform (2011) Lab Chip, 11 (6), pp. 1161-1165 | |
dc.description | Lu, Y., Lin, B., Qin, J., Patterned paper as a low-cost, flexible substrate for rapid prototyping of pdms microdevices via 'liquid molding' Anal. Chem., 83 (5), pp. 1830-1835 | |
dc.description | Olkkonen, J., Lehtinen, K., Erho, T., Flexographically printed fluidic structures in paper (2010) Anal. Chem., 82 (24), pp. 10246-10250 | |
dc.description | Cheng, C., Martinez, A.W., Gong, J., Paper-based ELISA (2010) Angew. Chem. Int. Ed., 49 (28), pp. 4771-4774 | |
dc.description | Li, X., Tian, J., Nguyen, T., Paper-based microfluidic devices by plasma treatment (2008) Anal. Chem., 80 (23), pp. 9131-9134 | |
dc.description | Li, X., Tian, J., Shen, W., Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors (2010) Cellulose, 17 (3), pp. 649-659 | |
dc.description | Nie, J., Liang, Y., Zhang, Y., One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices (2013) Analyst, 138 (2), pp. 671-676 | |
dc.description | Fu, E., Ramsey, S.A., Kauffman, P., Transport in two-dimensional paper networks (2011) Microfluid Nanofluid., 10 (1), pp. 29-35 | |
dc.description | Washburn, E.W., The dynamics of capillary flow (1921) Phys. Rev., 17 (3), pp. 273-283 | |
dc.description | Nery, E.W., Kubota, L.T., Sensing approaches on paper-based devices: A review (2013) Anal. Bioanal. Chem., 405 (24), pp. 7573-7595 | |
dc.description | Ramasamy, S.M., Hurtubise, R.J., Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper (1998) Talanta, 47 (4), pp. 971-979 | |
dc.description | Smz, H., Ozimok, C., Sicard, C., Multiplexed paper test strip for quantitative bacterial detection (2012) Anal. Bioanal. Chem., 403 (6), pp. 1567-1576 | |
dc.description | Cha, R., Wang, D., He, Z., Development of cellulose paper testing strips for quick measurement of glucose using chromogen agent (2012) Carbohydr. Polym., 88 (4), pp. 1414-1419 | |
dc.description | Mentele, M.M., Cunningham, J., Koehler, K., Microfluidic paper-based analytical device for particulate metals (2012) Anal. Chem., 84 (10), pp. 4474-4480 | |
dc.description | Parolo, C., Medina-Sánchez, M., Escosura-Muñiza, A., Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassay (2013) Lab Chip, 13 (3), pp. 386-390 | |
dc.description | Abbas, A., Brimer, A., Slocik, J.M., Multifunctional analytical platform on a paper strip: Separation, preconcentration, and subattomolar detection (2013) Anal. Chem., 85 (8), pp. 3977-3983 | |
dc.description | Sochol, R.D., Li, S., Lee, L.P., Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing (2012) Lab Chip, 12 (20), pp. 4168-4177 | |
dc.description | Li, X., Zwanenburg, P., Liu, X., Magnetic timing valves for fluid control in paper-based microfluidics (2013) Lab Chip, 13 (13), pp. 2609-2614 | |
dc.description | Chen, H., Cogswell, J., Anagnostopoulos, C., A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper (2012) Lab Chip, 12 (16), pp. 2909-2913 | |
dc.description | Lutz, B., Liang, T., Fu, E., Dissolvable fluidic time delays for programming multistep assays in instrument-free paper diagnostics (2013) Lab Chip, 13 (14), pp. 2840-2847 | |
dc.description | Jahanshahi-Anbuhi, S., Chavan, P., Sicard, C., Creating fast flow channels in paper fluidic devices to control timing of sequential reactions (2012) Lab Chip, 12 (23), pp. 5079-5085 | |
dc.description | Funes-Huacca, M.M., Wu, A., Szepesvari, E., Portable self-contained cultures for phage and bacteria made of paper and tape (2012) Lab Chip, 12 (21), pp. 4269-4278 | |
dc.description | Jokerst, J.C., Adkins, J., Bisha, B., Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens (2012) Anal. Chem., 84 (6), pp. 2900-2907 | |
dc.description | Derda, R., Laromaine, A., Mammoto, A., Paper-supported 3D cell culture for tissue-based bioassays (2009) Proc. Natl Acad. Sci. USA, 106 (44), pp. 18457-18462 | |
dc.description | Rsj, A., Ornatska, M., Andreescu, S., Colorimetric paper bioassay for the detection of phenolic compounds (2012) Anal. Chem., 84 (22), pp. 9729-9737 | |
dc.description | Lewis, G.G., Ditucci, M.J., Phillips, S.T., Quantifying analytes in paper-based microfluidic devices without using external electronic readers (2012) Angew. Chem. Int. Ed., 51 (51), pp. 12707-12710 | |
dc.description | Cate, D.M., Dungchai, W., Cunningham, J.C., Simple, distance-based measurement for paper analytical devices (2013) Lab Chip, 13 (12), pp. 2397-2404 | |
dc.description | Weaver, A.A., Reiser, H., Barstis, T., Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals (2013) Anal. Chem., 85 (13), pp. 6453-6460 | |
dc.description | Dungchai, W., Chailapakul, O., Henry, C.S., Electrochemical detection for paper-based microfluidics (2009) Anal. Chem., 81 (14), pp. 5821-5826 | |
dc.description | Nie, Z., Deiss, F., Liu, X., Integration of paper-based microfluidic devices with commercial electrochemical readers (2010) Lab Chip, 10 (22), pp. 3163-3169 | |
dc.description | Parolo, C., Medina-Sánchez, M., Montón, H., Paper-based electrodes for nanoparticles detection (2013) Part. Part. Syst. Charact., 30 (8), pp. 662-666 | |
dc.description | Apilux, A., Dungchai, W., Siangproh, W., Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron (2010) Anal. Chem., 82 (5), pp. 1727-1732 | |
dc.description | Santhiago, M., Kubota, L.T., A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes (2013) Sens. Actuators B Chem., 177, pp. 224-230 | |
dc.description | Carvalhal, R.F., Kfouri, M.S., Mho, P., Electrochemical detection in a paper-based separation device (2010) Anal. Chem., 82 (3), pp. 1162-1165 | |
dc.description | Kurra, N., Kulkarni, G.U., Pencil-on-paper: Electronic devices (2013) Lab Chip, 13 (15), pp. 2866-2873 | |
dc.description | Santhiago, M., Wydallis, J.B., Kubota, L.T., Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices (2013) Anal. Chem., 85 (10), pp. 5233-5239 | |
dc.description | Liana, D.D., Raguse, B., Wieczorek, L., Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors (2013) RSC Adv., 3 (23), pp. 8683-8691 | |
dc.description | Noiphung, J., Songjaroen, T., Dungchai, W., Electrochemical detection of glucose from whole blood using paper-based microfluidic devices (2013) Anal. Chim. Acta, 788, pp. 39-45 | |
dc.description | Dossi, N., Toniolo, R., Pizzariallo, A., Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices (2013) Electrophoresis, 34 (14), pp. 2085-2091 | |
dc.description | Yetisen, A.K., Akram, M.S., Lowe, C.R., Paper-based microfluidic point-of-care diagnostic devices (2013) Lab Chip, 13 (12), pp. 2210-2251 | |
dc.description | Sharma, P.S., D'Souza, S., Kutner, W., Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse (2012) Trends Analyt. Chem., 34, pp. 59-77 | |
dc.description | Ge, L., Wang, S., Yu, J., Molecularly imprinted polymer grafted porous au-paper electrode for an microfluidic electro-analytical origami device (2013) Adv. Funct. Mater., 23 (24), pp. 3115-3123 | |
dc.description | Martinez, A.W., Phillips, S.T., Carrilho, E., Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis (2008) Anal. Chem., 80 (10), pp. 3699-3707 | |
dc.description | Oncescu, V., O'Dell, D., Erickson, D., Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva (2013) Lab Chip, 13 (16), pp. 3232-3238 | |
dc.description | Delaney, J.L., Doeven, E.H., Harsant, A.J., Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors (2013) Anal. Chim. Acta, 790, pp. 56-60 | |
dc.description | Yu, J., Wang, S., Ge, L., A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination (2011) Biosens. Bioelectron., 26 (7), pp. 3284-3289 | |
dc.description | Wang, S., Ge, L., Li, L., Moleculary imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide (2013) Biosens. Bioelectron., 50, pp. 262-268 | |
dc.description | Wang, S., Ge, L., Song, X., Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax screen-printing (2012) Biosens. Bioelectron., 31 (1), pp. 212-218 | |
dc.description | Ge, L., Wang, S., Song, X., 3D Origami-based multifunction-integrated immunodevice: Low cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device (2012) Lab Chip, 12 (17), pp. 3150-3158 | |
dc.description | Li, W., Li, L., Ge, S., A 3D origami multiple electrochemiluminescence immunodevice based on a porous silver-paper electrode and multi-labeled nanoporous gold-carbon spheres (2013) Chem. Commun., 49 (17), pp. 7687-7689 | |
dc.description | Xu, Y., Lou, B., Lv, Z., Paper-based solid-state electrochemiluminescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion composite film (2013) Anal. Chim. Acta, 763, pp. 20-27 | |
dc.description | Liu, W., Cassano, C.L., Xu, X., Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum (2013) Anal. Chem., 85 (21), pp. 10270-10276 | |
dc.description | Li, W., Li, M., Ge, S., Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy (2013) Anal. Chim. Acta, 767, pp. 66-74 | |
dc.description | Yan, J., Yan, M., Ge, L., A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative (2013) Chem. Commun., 49 (14), pp. 1383-1385 | |
dc.description | Zhang, X., Li, J., Chen, C., A self-powered microfluidic origami electrochemiluminescence biosensing platform (2013) Chem. Commun., 49 (37), pp. 3866-3868 | |
dc.description | Ge, L., Wang, P., Ge, S., Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source (2013) Anal. Chem., 85 (8), pp. 3961-3970 | |
dc.description | Wang, P., Ge, L., Ge, S., A paper-based photoelectrochemical immunoassay for low-cost and multiplexed point-of-care testing (2013) Chem. Commun., 49 (32), pp. 3294-3296 | |
dc.description | Lee, J., Kim, J.H., Lee, S.H., In-situ on-fabric one-touch colorimetric detection using aptamer-conjugated gold nanoparticles (2013) BioChip J., 7 (2), pp. 180-187 | |
dc.description | Guinovart, T., Parrilla, M., Crespo, G.A., Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes (2013) Analyst, 138 (18), pp. 5208-5215 | |
dc.description | Chin, C.D., Linder, V., Sia, S.K., Commercialization of microfluidic point-of-care diagnostic devices (2012) Lab Chip, 12 (12), pp. 2118-2134 | |
dc.description | Wang, W., Wu, W.-Y., Wang, W., Zhu, J.-J., Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration (2010) J. Chrom. A, 1217 (24), pp. 3896-3899 | |
dc.description | Yu, J., Ge, L., Huang, J., Wang, S., Ge S.Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid (2011) Lab Chip, 11 (7), pp. 1286-1291 | |
dc.description | Carl Schleicher & Schull Co.: US2129754 (1938)Chemtrak, Inc.: US5409664 (1995)Diamatrix Limited: US6573108 (2003)www.labonfoil.eu, LABONFOIL Integrated Projectwww.epiloglaser.com/tl_power_consumption.htm, Epilog Laser | |
dc.language | en | |
dc.publisher | | |
dc.relation | Bioanalysis | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Microfluidic Paper-based Devices For Bioanalytical Applications | |
dc.type | Artículos de revistas | |