dc.creatorSanthiago M.
dc.creatorNery E.W.
dc.creatorSantos G.P.
dc.creatorKubota L.T.
dc.date2014
dc.date2015-06-25T17:54:16Z
dc.date2015-11-26T14:31:50Z
dc.date2015-06-25T17:54:16Z
dc.date2015-11-26T14:31:50Z
dc.date.accessioned2018-03-28T21:35:12Z
dc.date.available2018-03-28T21:35:12Z
dc.identifier
dc.identifierBioanalysis. , v. 6, n. 1, p. 89 - 106, 2014.
dc.identifier17576180
dc.identifier10.4155/bio.13.296
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84890963567&partnerID=40&md5=e673130778e8dd67b55e023fdc28510e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86644
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86644
dc.identifier2-s2.0-84890963567
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247462
dc.descriptionPaper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed. © 2014 Future Science Ltd.
dc.description6
dc.description1
dc.description89
dc.description106
dc.descriptionBier, F.F., Schumacher, S., Integration in bioanalysis: Technologies for point-of-care testing (2013) Adv. Biochem. Eng. Biotechnol., 133, pp. 1-14
dc.descriptionGubala, V., Harris, L.F., Ricco, A.J., Point of care diagnostics: Status and future (2012) Anal. Chem., 84 (2), pp. 487-515
dc.descriptionWarsinke, A., Point-of-care testing of proteins (2009) Anal. Bioanal. Chem., 393 (5), pp. 1393-1405
dc.descriptionWhitesides, G.M., The origins and the future of microfluidics (2006) Nature, 442 (7107), pp. 368-373
dc.descriptionFigeys, D., Pinto, D., Lab-on-a-chip: A revolution in biological and medical sciences (2000) Anal. Chem., 72 (9), pp. 330A-335A
dc.descriptionHarrison, D.J., Fluri, K., Seiler, K., Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip (1993) Science, 261 (5123), pp. 895-897
dc.descriptionEffenahuser, C., Manz, A., Widmer, H.M., Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights (1993) Anal. Chem., 65 (19), pp. 2637-2642
dc.descriptionDuffy, D.C., McDonald, J.C., Oja, S., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) (1998) Anal. Chem., 70 (23), pp. 4974-4984
dc.descriptionMao, X., Huang, T.J., Microfluidic diagnostics for the developing world (2012) Lab Chip, 12 (8), pp. 1412-1416
dc.descriptionLi, X., Ballerini, D.R., Shen, W., A perspective on paper-based microfluidics: Current status and future trends (2012) Biomicrofluidics, 6 (1), p. 011301
dc.descriptionGe, S., Ge, L., Yan, M., A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification (2013) Biosens. Bioelectron., 43, pp. 425-431
dc.descriptionSameenoi, Y., Panymeesamer, P., Supalakorn, N., Microfluidic paper-based analytical device for aerosol oxidative (2013) Environ. Sci. Technol., 47 (2), pp. 932-940
dc.descriptionAml, M., Pons, J., Blake, D.A., All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters (2013) Anal. Chem., 85 (7), pp. 3532-3538
dc.descriptionAnfossi, L., Baggiani, C., Giovannoli, C., Optimization of a lateral flow immunoassay for the ultrasensitive detection of aflatoxin M1 in milk (2013) Anal. Chim. Acta, 772, pp. 75-80
dc.descriptionLinares, E.M., Pannuti, C.S., Kubota, L.T., Immunospot assay based on fluorescent nanoparticles for Dengue fever detection (2013) Biosens. Bioelectron., 41, pp. 180-185
dc.descriptionLópez, A.M., Pons, J., Blake, D.A., High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters (2013) Biosens. Bioelectron., 47, pp. 190-198
dc.descriptionKouisni, L., Rochefort, D., Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates (2009) J. Appl. Polym. Sci., 111 (1), pp. 1-10
dc.descriptionCouderc, S., Ducloux, O., Kim, B.J., A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet (2009) J. Micromech. Microeng., 19 (5), p. 055006
dc.descriptionNoh, H., Phillips, S.T., Fluidic timers for time-dependent, point-of-care assays on paper (2010) Anal. Chem., 82 (19), pp. 8071-8078
dc.descriptionParolo, C., Merkoçi, A., Paper-based nanobiosensors for diagnostics (2013) Chem. Soc. Rev., 42 (2), pp. 450-457
dc.descriptionShah, P., Zhu, X., Li, C., Development of a paper-based analytical kit for point-of-care testing (2013) Expert Rev. Mol. Diagn., 13 (1), pp. 83-91
dc.descriptionMaxwell, E.J., Mazzeo, A.D., Whitesides, G.M., Paper-based electroanalytical devices for accessible diagnostic testing (2013) MRS Bull., 38 (4), pp. 309-314
dc.descriptionPelton, R., Bioactive paper provides a low-cost platform for diagnostics (2009) Trends Analyt. Chem., 28 (8), pp. 925-942
dc.descriptionLuppa, P.B., Müller, C., Chlichtiger, A., Point-of-care testing (POCT): Current techniques and future perspectives (2011) Trends Analyt. Chem., 30 (6), pp. 887-898
dc.descriptionShiroma, L.Y., Santhiago, M., Gobbi, A.L., Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device (2012) Anal. Chim. Acta, 725, pp. 44-50
dc.descriptionBostock, J., Riley, H.T., (1855) Natural History, , Pliny, Elder. Book XIII 21. The Papyrus: The use of paper: when it was first invented, Book XXXIV, 26. Verdigris
dc.descriptionEighteen remedies Taylor and Francis, London, UK
dc.descriptionMorgan, E.D., Wilson, I.D., An early description of paper chromatography (2004) Chromatographia, 60 (1-2), pp. 135-136
dc.descriptionCrosland, M., (1978) Gay-Lussac Scientist and Bourgeois, , Cambridge University Press, Cambridge, UK
dc.descriptionWeil, H., The evolution of paper chromatography, 1. Radial paper chromatography (1953) Colloid Polym. Sci., 132 (2-3), pp. 149-162
dc.descriptionRocco, R.M., Landmark papers in clinical chemistry (2006) Elsevier Science, pp. 323-324. , Amsterdam, Holland
dc.descriptionYagoda, H., Applications of confined spot tests in analytical chemistry (1937) Ind. Eng. Chem. Res., 9 (2), pp. 79-82
dc.descriptionMuller, R.H., Clegg, D.L., Automatic paper chromatography (1949) Anal. Chem., 21 (9), pp. 1123-1125
dc.descriptionKunkel, H.G., Tiselius, A., Andersen, O.S., Electrophoresis of proteins on filter paper (1951) J. Gen. Physiol., 35 (1), pp. 89-118
dc.descriptionDavies, R.J., Eapen, S.S., Carlisle, S.J., Chapter 74. Lateral-flow Immunochromatographic Assays (2002) Handbook on Biosensors and Biochips, , Wiley, NJ, USA, 1
dc.descriptionMartinez, A.W., Phillips, S.T., Butte, M.J., Patterned paper as a platform for inexpensive, low-volume, portable bioassays (2007) Angew. Chem. Int. Ed., 46 (8), pp. 1318-1320
dc.descriptionDungchai, W., Chailapakul, O., Henry, C.S., A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing (2011) Analyst, 136 (1), pp. 77-82
dc.descriptionAbe, K., Suzuki, K., Citterio, D., Inkjet-printed microfluidic multianalyte chemical sensing paper (2008) Anal. Chem., 80 (18), pp. 6928-6934
dc.descriptionLi, X., Tian, J., Garnier, G., Fabrication of paper-based microfluidic sensors by printing (2010) Colloids Surf. B Biointerfaces, 56 (2), pp. 564-570
dc.descriptionSongjaroen, T., Dungchai, W., Chailapakul, O., Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping (2011) Talanta, 85 (5), pp. 2587-2593
dc.descriptionNurak, T., Praphairaksit, N., Chailapakul, O., Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water (2013) Talanta, 114, pp. 291-296
dc.descriptionNie, J., Zhang, Y., Lin, L., Low-cost fabrication of paper-based microfluidic devices by one-step plotting (2012) Anal. Chem., 84 (15), pp. 6331-6335
dc.descriptionMartinez, A.W., Phillips, S.T., Wiley, B.J., FLASH: A rapid method for prototyping paper-based microfluidic devices (2008) Lab Chip, 8 (12), pp. 2146-2150
dc.descriptionCarrilho, E., Martinez, A.W., Whitesides, G.M., Understanding wax printing: A simple micropatterning process for paper-based microfluidics (2009) Anal. Chem., 81 (16), pp. 7091-7095
dc.descriptionChitnis, G., Ding, Z., Chang, C., Laser-treated hydrophobic paper: An inexpensive microfluidic platform (2011) Lab Chip, 11 (6), pp. 1161-1165
dc.descriptionLu, Y., Lin, B., Qin, J., Patterned paper as a low-cost, flexible substrate for rapid prototyping of pdms microdevices via 'liquid molding' Anal. Chem., 83 (5), pp. 1830-1835
dc.descriptionOlkkonen, J., Lehtinen, K., Erho, T., Flexographically printed fluidic structures in paper (2010) Anal. Chem., 82 (24), pp. 10246-10250
dc.descriptionCheng, C., Martinez, A.W., Gong, J., Paper-based ELISA (2010) Angew. Chem. Int. Ed., 49 (28), pp. 4771-4774
dc.descriptionLi, X., Tian, J., Nguyen, T., Paper-based microfluidic devices by plasma treatment (2008) Anal. Chem., 80 (23), pp. 9131-9134
dc.descriptionLi, X., Tian, J., Shen, W., Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors (2010) Cellulose, 17 (3), pp. 649-659
dc.descriptionNie, J., Liang, Y., Zhang, Y., One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices (2013) Analyst, 138 (2), pp. 671-676
dc.descriptionFu, E., Ramsey, S.A., Kauffman, P., Transport in two-dimensional paper networks (2011) Microfluid Nanofluid., 10 (1), pp. 29-35
dc.descriptionWashburn, E.W., The dynamics of capillary flow (1921) Phys. Rev., 17 (3), pp. 273-283
dc.descriptionNery, E.W., Kubota, L.T., Sensing approaches on paper-based devices: A review (2013) Anal. Bioanal. Chem., 405 (24), pp. 7573-7595
dc.descriptionRamasamy, S.M., Hurtubise, R.J., Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper (1998) Talanta, 47 (4), pp. 971-979
dc.descriptionSmz, H., Ozimok, C., Sicard, C., Multiplexed paper test strip for quantitative bacterial detection (2012) Anal. Bioanal. Chem., 403 (6), pp. 1567-1576
dc.descriptionCha, R., Wang, D., He, Z., Development of cellulose paper testing strips for quick measurement of glucose using chromogen agent (2012) Carbohydr. Polym., 88 (4), pp. 1414-1419
dc.descriptionMentele, M.M., Cunningham, J., Koehler, K., Microfluidic paper-based analytical device for particulate metals (2012) Anal. Chem., 84 (10), pp. 4474-4480
dc.descriptionParolo, C., Medina-Sánchez, M., Escosura-Muñiza, A., Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassay (2013) Lab Chip, 13 (3), pp. 386-390
dc.descriptionAbbas, A., Brimer, A., Slocik, J.M., Multifunctional analytical platform on a paper strip: Separation, preconcentration, and subattomolar detection (2013) Anal. Chem., 85 (8), pp. 3977-3983
dc.descriptionSochol, R.D., Li, S., Lee, L.P., Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing (2012) Lab Chip, 12 (20), pp. 4168-4177
dc.descriptionLi, X., Zwanenburg, P., Liu, X., Magnetic timing valves for fluid control in paper-based microfluidics (2013) Lab Chip, 13 (13), pp. 2609-2614
dc.descriptionChen, H., Cogswell, J., Anagnostopoulos, C., A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper (2012) Lab Chip, 12 (16), pp. 2909-2913
dc.descriptionLutz, B., Liang, T., Fu, E., Dissolvable fluidic time delays for programming multistep assays in instrument-free paper diagnostics (2013) Lab Chip, 13 (14), pp. 2840-2847
dc.descriptionJahanshahi-Anbuhi, S., Chavan, P., Sicard, C., Creating fast flow channels in paper fluidic devices to control timing of sequential reactions (2012) Lab Chip, 12 (23), pp. 5079-5085
dc.descriptionFunes-Huacca, M.M., Wu, A., Szepesvari, E., Portable self-contained cultures for phage and bacteria made of paper and tape (2012) Lab Chip, 12 (21), pp. 4269-4278
dc.descriptionJokerst, J.C., Adkins, J., Bisha, B., Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens (2012) Anal. Chem., 84 (6), pp. 2900-2907
dc.descriptionDerda, R., Laromaine, A., Mammoto, A., Paper-supported 3D cell culture for tissue-based bioassays (2009) Proc. Natl Acad. Sci. USA, 106 (44), pp. 18457-18462
dc.descriptionRsj, A., Ornatska, M., Andreescu, S., Colorimetric paper bioassay for the detection of phenolic compounds (2012) Anal. Chem., 84 (22), pp. 9729-9737
dc.descriptionLewis, G.G., Ditucci, M.J., Phillips, S.T., Quantifying analytes in paper-based microfluidic devices without using external electronic readers (2012) Angew. Chem. Int. Ed., 51 (51), pp. 12707-12710
dc.descriptionCate, D.M., Dungchai, W., Cunningham, J.C., Simple, distance-based measurement for paper analytical devices (2013) Lab Chip, 13 (12), pp. 2397-2404
dc.descriptionWeaver, A.A., Reiser, H., Barstis, T., Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals (2013) Anal. Chem., 85 (13), pp. 6453-6460
dc.descriptionDungchai, W., Chailapakul, O., Henry, C.S., Electrochemical detection for paper-based microfluidics (2009) Anal. Chem., 81 (14), pp. 5821-5826
dc.descriptionNie, Z., Deiss, F., Liu, X., Integration of paper-based microfluidic devices with commercial electrochemical readers (2010) Lab Chip, 10 (22), pp. 3163-3169
dc.descriptionParolo, C., Medina-Sánchez, M., Montón, H., Paper-based electrodes for nanoparticles detection (2013) Part. Part. Syst. Charact., 30 (8), pp. 662-666
dc.descriptionApilux, A., Dungchai, W., Siangproh, W., Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron (2010) Anal. Chem., 82 (5), pp. 1727-1732
dc.descriptionSanthiago, M., Kubota, L.T., A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes (2013) Sens. Actuators B Chem., 177, pp. 224-230
dc.descriptionCarvalhal, R.F., Kfouri, M.S., Mho, P., Electrochemical detection in a paper-based separation device (2010) Anal. Chem., 82 (3), pp. 1162-1165
dc.descriptionKurra, N., Kulkarni, G.U., Pencil-on-paper: Electronic devices (2013) Lab Chip, 13 (15), pp. 2866-2873
dc.descriptionSanthiago, M., Wydallis, J.B., Kubota, L.T., Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices (2013) Anal. Chem., 85 (10), pp. 5233-5239
dc.descriptionLiana, D.D., Raguse, B., Wieczorek, L., Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors (2013) RSC Adv., 3 (23), pp. 8683-8691
dc.descriptionNoiphung, J., Songjaroen, T., Dungchai, W., Electrochemical detection of glucose from whole blood using paper-based microfluidic devices (2013) Anal. Chim. Acta, 788, pp. 39-45
dc.descriptionDossi, N., Toniolo, R., Pizzariallo, A., Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices (2013) Electrophoresis, 34 (14), pp. 2085-2091
dc.descriptionYetisen, A.K., Akram, M.S., Lowe, C.R., Paper-based microfluidic point-of-care diagnostic devices (2013) Lab Chip, 13 (12), pp. 2210-2251
dc.descriptionSharma, P.S., D'Souza, S., Kutner, W., Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse (2012) Trends Analyt. Chem., 34, pp. 59-77
dc.descriptionGe, L., Wang, S., Yu, J., Molecularly imprinted polymer grafted porous au-paper electrode for an microfluidic electro-analytical origami device (2013) Adv. Funct. Mater., 23 (24), pp. 3115-3123
dc.descriptionMartinez, A.W., Phillips, S.T., Carrilho, E., Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis (2008) Anal. Chem., 80 (10), pp. 3699-3707
dc.descriptionOncescu, V., O'Dell, D., Erickson, D., Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva (2013) Lab Chip, 13 (16), pp. 3232-3238
dc.descriptionDelaney, J.L., Doeven, E.H., Harsant, A.J., Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors (2013) Anal. Chim. Acta, 790, pp. 56-60
dc.descriptionYu, J., Wang, S., Ge, L., A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination (2011) Biosens. Bioelectron., 26 (7), pp. 3284-3289
dc.descriptionWang, S., Ge, L., Li, L., Moleculary imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide (2013) Biosens. Bioelectron., 50, pp. 262-268
dc.descriptionWang, S., Ge, L., Song, X., Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax screen-printing (2012) Biosens. Bioelectron., 31 (1), pp. 212-218
dc.descriptionGe, L., Wang, S., Song, X., 3D Origami-based multifunction-integrated immunodevice: Low cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device (2012) Lab Chip, 12 (17), pp. 3150-3158
dc.descriptionLi, W., Li, L., Ge, S., A 3D origami multiple electrochemiluminescence immunodevice based on a porous silver-paper electrode and multi-labeled nanoporous gold-carbon spheres (2013) Chem. Commun., 49 (17), pp. 7687-7689
dc.descriptionXu, Y., Lou, B., Lv, Z., Paper-based solid-state electrochemiluminescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion composite film (2013) Anal. Chim. Acta, 763, pp. 20-27
dc.descriptionLiu, W., Cassano, C.L., Xu, X., Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum (2013) Anal. Chem., 85 (21), pp. 10270-10276
dc.descriptionLi, W., Li, M., Ge, S., Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy (2013) Anal. Chim. Acta, 767, pp. 66-74
dc.descriptionYan, J., Yan, M., Ge, L., A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative (2013) Chem. Commun., 49 (14), pp. 1383-1385
dc.descriptionZhang, X., Li, J., Chen, C., A self-powered microfluidic origami electrochemiluminescence biosensing platform (2013) Chem. Commun., 49 (37), pp. 3866-3868
dc.descriptionGe, L., Wang, P., Ge, S., Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source (2013) Anal. Chem., 85 (8), pp. 3961-3970
dc.descriptionWang, P., Ge, L., Ge, S., A paper-based photoelectrochemical immunoassay for low-cost and multiplexed point-of-care testing (2013) Chem. Commun., 49 (32), pp. 3294-3296
dc.descriptionLee, J., Kim, J.H., Lee, S.H., In-situ on-fabric one-touch colorimetric detection using aptamer-conjugated gold nanoparticles (2013) BioChip J., 7 (2), pp. 180-187
dc.descriptionGuinovart, T., Parrilla, M., Crespo, G.A., Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes (2013) Analyst, 138 (18), pp. 5208-5215
dc.descriptionChin, C.D., Linder, V., Sia, S.K., Commercialization of microfluidic point-of-care diagnostic devices (2012) Lab Chip, 12 (12), pp. 2118-2134
dc.descriptionWang, W., Wu, W.-Y., Wang, W., Zhu, J.-J., Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration (2010) J. Chrom. A, 1217 (24), pp. 3896-3899
dc.descriptionYu, J., Ge, L., Huang, J., Wang, S., Ge S.Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid (2011) Lab Chip, 11 (7), pp. 1286-1291
dc.descriptionCarl Schleicher & Schull Co.: US2129754 (1938)Chemtrak, Inc.: US5409664 (1995)Diamatrix Limited: US6573108 (2003)www.labonfoil.eu, LABONFOIL Integrated Projectwww.epiloglaser.com/tl_power_consumption.htm, Epilog Laser
dc.languageen
dc.publisher
dc.relationBioanalysis
dc.rightsfechado
dc.sourceScopus
dc.titleMicrofluidic Paper-based Devices For Bioanalytical Applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución