Artículos de revistas
Cobalt Nanoparticles Prepared By Three Different Methods
Registro en:
Journal Of Experimental Nanoscience. , v. 9, n. 4, p. 398 - 405, 2014.
17458080
10.1080/17458080.2012.662723
2-s2.0-84892630761
Autor
Zola A.S.
Ribeiro R.U.
Bueno J.M.C.
Zanchet D.
Arroyo P.A.
Institución
Resumen
This work aimed to study cobalt nanoparticles (Co-NPs) preparation using three different methods in order to evaluate the effect of synthesis variables that can influence the nanoparticle size distribution and particle shape. The synthesised nanoparticles were characterised by Transmission Electron Microscopy. The first synthesis employed decomposition of Co2(CO)8, at high temperatures. This procedure resulted in spherical nanoparticles with low size distribution. The size of Co-NPs could be tuned by modification of precursor/surfactant, nevertheless the stirring and injection time influenced the size distribution. Using polyol process, at high temperatures, it was produced undefined-shape nanoparticles. This result suggests that the solution composition, i.e. the amount of trioctylphosphine and oleic acid was not suitable to control both size and shape of nanoparticles. Finally, the method based on reduction with NaBH4 resulted spherical nanoparticles with tiny sizes, indicating that in this case a variation on amount of reductant would be more efficient on the particle size control than a variation in concentration of oleic acid. These results indicated that, for each method, a different variable exists for the control of the distribution size and the shape of the formed particles. © 2014 Copyright Taylor and Francis Group, LLC. 9 4 398 405 Bao, Y., Beerman, M., Krishnan, K.M., Letter to the editor: Controlled self-assembly of colloidal cobalt nanocrystals (2003) J. Magn. Magn. Mater., 266, pp. L245-L249 Puntes, V.F., Krishnan, K.M., Synthesis, structural order and magnetic behavior of self-assembled ε-Co nanocrystal arrays (2001) IEEE Trans. Magn., 37 (4), pp. 2210-2212 Aiken III, J.D., Finke, R.G., A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis (1999) J. Mol. Catal. A Chem., 145, pp. 1-44 Bezemer, G.L., Bitter, J.H., Kuipers, H.P.C.E., Oosterbeek, H., Holewijn, J.E., Xu, X., Kapteijn, F., de Jong, K.P., Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts (2006) J. Am. Chem. Soc., 128 (12), pp. 3956-3964 Sun, S., Murray, C.B., Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) (1999) J. Appl. Phys., 85 (8), pp. 4325-4330 Zhao, Y.-W., Zheng, R.K., Zhang, X.X., Xiao, J.Q., A simple method to prepare uniform cobalt nanoparticles (2003) IEEE Trans. Magn., 39 (5), pp. 2764-2766 Kobayashi, Y.M., Horie, M., Konno, M., Rodriguez-Gonzalez, B., Liz-Marzan, L.M., Preparation and properties of silica-coated cobalt nanoparticles (2003) J. Phys. Chem. B, 107 (30), pp. 7420-7425 Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C., Dravid, V.P., Interaction of fatty acid monolayers with cobalt nanoparticles (2004) Nano Lett., 4 (2), pp. 383-386 Su, Y.K., Shen, C.M., Yang, T.Z., Yang, H.T., Gao, H.J., Li, H.L., The dependence of Co nanoparticles sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties (2005) Appl. Phys. A, 81, pp. 569-572 Martínez, A., Prieto, G., Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles (2007) J. Catal., 245, pp. 470-476 Martínez, A., Prieto, G., The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles (2007) Catal. Commun., 8, pp. 1479-1486 Osuna, J., Decaro, D., Amiens, C., Chaudret, B., Snoeck, E., Respaud, M., Broto, J.M., Fert, A., Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor (1996) J. Phys. Chem., 100 (35), pp. 14571-14574 Dassenoy, F., Casanove, M.J., Lecante, P., Verelst, M., Snoeck, E., Mosset, A., Ely, T.O., Chaudret, B., Experimental evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers - from a polytetrahedral arrangement to the hexagonal structure (2000) J. Chem. Phys., 112 (18), pp. 8137-8145 Puntes, V.F., Krishnan, K.M., Alivisatos, A.P., Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles (2001) Appl. Phys. Lett., 78 (15), pp. 2187-2189 Puntes, V.F., Krishnan, K., Alivisatos, A.P., Synthesis of colloidal cobalt nanoparticles with controlled size and shapes (2002) Top. Catal., 19 (2), pp. 145-148 Ribeiro, R.U., Liberatori, J.W.C., Winnishofer, H., Bueno, J.M.C., Zanchet, D., Zanchet, D., Colloidal Co nanoparticles supported on SiO2: Synthesis, characterization and catalytic properties for steam reforming of ethanol (2009) Appl. Catal. B Environ., 91, pp. 670-678 Murray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A., Kagan, C.R., Colloidal synthesis of nanocrystals and nanocrystal superlattices (2001) IBM J. Res. Dev., 45 (1), pp. 47-56 Lisiecki, I., Size, shape, and structural control of metallic nanocrystals (2005) J. Phys. Chem. B, 109 (25), pp. 12231-12244 Wang, C., Fang, J., He, J., O'Connor, C.J., Synthesis of one-dimensional magnetic Co nanoparticles in a novel solution system (2003) J. Colloid Interf. Sci., 259, pp. 411-413 Cha, S.I., Mo, C.H., Kim, K.T., Hong, S.H., Ferromagnetic cobalt nanodots, nanorices, nanowires and nanoflowers by polyol process (2005) J. Mater. Res., 20 (8), pp. 2148-2153 Puntes, V.F., Zanchet, D., Erdonmez, C.K., Alivisatos, A.P., Synthesis of hcp-Co nanodisks (2002) J. Am. Chem. Soc., 124 (43), pp. 12874-12880 Chakroune, N., Viau, G., Ricolleau, C., Fiévet-Vincent, F., Fiévet, F., Cobalt-based anisotropic particles prepared by the polyol process (2003) J. Mater. Chem., 13, pp. 312-318 Wilcoxon, J.P., Abrams, B.L., Synthesis, structure and properties of metal nanoclusters (2006) Chem. Soc. Rev., 35, pp. 1162-1194 Rotstein, H.G., Tannenbaum, R., Cluster coagulation and growth by surface interactions with polymers (2002) J. Phys. Chem. B, 106, pp. 146-151 Murray, C.B., Sun, S., Doyle, H., Betley, T., Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices (2001) MRS Bull, pp. 985-991 Glavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C., Sodium borohydride reduction of cobalt ions in nonaqueous media. Formation of ultrafine particles (nanoscale) of cobalt metal (1993) Inorg. Chem., 32, pp. 474-477 Glavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C., Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles (1993) Langmuir, 8, pp. 771-773 Lisiecki, I., Pileni, M.P., Synthesis of well-defined and low size distribution cobalt nanocrystals: The limited influence of reverse micelles (2003) Langmuir, 19, pp. 9486-9489