dc.creatorZola A.S.
dc.creatorRibeiro R.U.
dc.creatorBueno J.M.C.
dc.creatorZanchet D.
dc.creatorArroyo P.A.
dc.date2014
dc.date2015-06-25T17:54:10Z
dc.date2015-11-26T14:31:18Z
dc.date2015-06-25T17:54:10Z
dc.date2015-11-26T14:31:18Z
dc.date.accessioned2018-03-28T21:34:40Z
dc.date.available2018-03-28T21:34:40Z
dc.identifier
dc.identifierJournal Of Experimental Nanoscience. , v. 9, n. 4, p. 398 - 405, 2014.
dc.identifier17458080
dc.identifier10.1080/17458080.2012.662723
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84892630761&partnerID=40&md5=201a66b56699e439e8e457ed460d36ba
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86618
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86618
dc.identifier2-s2.0-84892630761
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247338
dc.descriptionThis work aimed to study cobalt nanoparticles (Co-NPs) preparation using three different methods in order to evaluate the effect of synthesis variables that can influence the nanoparticle size distribution and particle shape. The synthesised nanoparticles were characterised by Transmission Electron Microscopy. The first synthesis employed decomposition of Co2(CO)8, at high temperatures. This procedure resulted in spherical nanoparticles with low size distribution. The size of Co-NPs could be tuned by modification of precursor/surfactant, nevertheless the stirring and injection time influenced the size distribution. Using polyol process, at high temperatures, it was produced undefined-shape nanoparticles. This result suggests that the solution composition, i.e. the amount of trioctylphosphine and oleic acid was not suitable to control both size and shape of nanoparticles. Finally, the method based on reduction with NaBH4 resulted spherical nanoparticles with tiny sizes, indicating that in this case a variation on amount of reductant would be more efficient on the particle size control than a variation in concentration of oleic acid. These results indicated that, for each method, a different variable exists for the control of the distribution size and the shape of the formed particles. © 2014 Copyright Taylor and Francis Group, LLC.
dc.description9
dc.description4
dc.description398
dc.description405
dc.descriptionBao, Y., Beerman, M., Krishnan, K.M., Letter to the editor: Controlled self-assembly of colloidal cobalt nanocrystals (2003) J. Magn. Magn. Mater., 266, pp. L245-L249
dc.descriptionPuntes, V.F., Krishnan, K.M., Synthesis, structural order and magnetic behavior of self-assembled ε-Co nanocrystal arrays (2001) IEEE Trans. Magn., 37 (4), pp. 2210-2212
dc.descriptionAiken III, J.D., Finke, R.G., A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis (1999) J. Mol. Catal. A Chem., 145, pp. 1-44
dc.descriptionBezemer, G.L., Bitter, J.H., Kuipers, H.P.C.E., Oosterbeek, H., Holewijn, J.E., Xu, X., Kapteijn, F., de Jong, K.P., Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts (2006) J. Am. Chem. Soc., 128 (12), pp. 3956-3964
dc.descriptionSun, S., Murray, C.B., Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) (1999) J. Appl. Phys., 85 (8), pp. 4325-4330
dc.descriptionZhao, Y.-W., Zheng, R.K., Zhang, X.X., Xiao, J.Q., A simple method to prepare uniform cobalt nanoparticles (2003) IEEE Trans. Magn., 39 (5), pp. 2764-2766
dc.descriptionKobayashi, Y.M., Horie, M., Konno, M., Rodriguez-Gonzalez, B., Liz-Marzan, L.M., Preparation and properties of silica-coated cobalt nanoparticles (2003) J. Phys. Chem. B, 107 (30), pp. 7420-7425
dc.descriptionWu, N., Fu, L., Su, M., Aslam, M., Wong, K.C., Dravid, V.P., Interaction of fatty acid monolayers with cobalt nanoparticles (2004) Nano Lett., 4 (2), pp. 383-386
dc.descriptionSu, Y.K., Shen, C.M., Yang, T.Z., Yang, H.T., Gao, H.J., Li, H.L., The dependence of Co nanoparticles sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties (2005) Appl. Phys. A, 81, pp. 569-572
dc.descriptionMartínez, A., Prieto, G., Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles (2007) J. Catal., 245, pp. 470-476
dc.descriptionMartínez, A., Prieto, G., The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles (2007) Catal. Commun., 8, pp. 1479-1486
dc.descriptionOsuna, J., Decaro, D., Amiens, C., Chaudret, B., Snoeck, E., Respaud, M., Broto, J.M., Fert, A., Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor (1996) J. Phys. Chem., 100 (35), pp. 14571-14574
dc.descriptionDassenoy, F., Casanove, M.J., Lecante, P., Verelst, M., Snoeck, E., Mosset, A., Ely, T.O., Chaudret, B., Experimental evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers - from a polytetrahedral arrangement to the hexagonal structure (2000) J. Chem. Phys., 112 (18), pp. 8137-8145
dc.descriptionPuntes, V.F., Krishnan, K.M., Alivisatos, A.P., Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles (2001) Appl. Phys. Lett., 78 (15), pp. 2187-2189
dc.descriptionPuntes, V.F., Krishnan, K., Alivisatos, A.P., Synthesis of colloidal cobalt nanoparticles with controlled size and shapes (2002) Top. Catal., 19 (2), pp. 145-148
dc.descriptionRibeiro, R.U., Liberatori, J.W.C., Winnishofer, H., Bueno, J.M.C., Zanchet, D., Zanchet, D., Colloidal Co nanoparticles supported on SiO2: Synthesis, characterization and catalytic properties for steam reforming of ethanol (2009) Appl. Catal. B Environ., 91, pp. 670-678
dc.descriptionMurray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A., Kagan, C.R., Colloidal synthesis of nanocrystals and nanocrystal superlattices (2001) IBM J. Res. Dev., 45 (1), pp. 47-56
dc.descriptionLisiecki, I., Size, shape, and structural control of metallic nanocrystals (2005) J. Phys. Chem. B, 109 (25), pp. 12231-12244
dc.descriptionWang, C., Fang, J., He, J., O'Connor, C.J., Synthesis of one-dimensional magnetic Co nanoparticles in a novel solution system (2003) J. Colloid Interf. Sci., 259, pp. 411-413
dc.descriptionCha, S.I., Mo, C.H., Kim, K.T., Hong, S.H., Ferromagnetic cobalt nanodots, nanorices, nanowires and nanoflowers by polyol process (2005) J. Mater. Res., 20 (8), pp. 2148-2153
dc.descriptionPuntes, V.F., Zanchet, D., Erdonmez, C.K., Alivisatos, A.P., Synthesis of hcp-Co nanodisks (2002) J. Am. Chem. Soc., 124 (43), pp. 12874-12880
dc.descriptionChakroune, N., Viau, G., Ricolleau, C., Fiévet-Vincent, F., Fiévet, F., Cobalt-based anisotropic particles prepared by the polyol process (2003) J. Mater. Chem., 13, pp. 312-318
dc.descriptionWilcoxon, J.P., Abrams, B.L., Synthesis, structure and properties of metal nanoclusters (2006) Chem. Soc. Rev., 35, pp. 1162-1194
dc.descriptionRotstein, H.G., Tannenbaum, R., Cluster coagulation and growth by surface interactions with polymers (2002) J. Phys. Chem. B, 106, pp. 146-151
dc.descriptionMurray, C.B., Sun, S., Doyle, H., Betley, T., Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices (2001) MRS Bull, pp. 985-991
dc.descriptionGlavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C., Sodium borohydride reduction of cobalt ions in nonaqueous media. Formation of ultrafine particles (nanoscale) of cobalt metal (1993) Inorg. Chem., 32, pp. 474-477
dc.descriptionGlavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C., Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles (1993) Langmuir, 8, pp. 771-773
dc.descriptionLisiecki, I., Pileni, M.P., Synthesis of well-defined and low size distribution cobalt nanocrystals: The limited influence of reverse micelles (2003) Langmuir, 19, pp. 9486-9489
dc.languageen
dc.publisher
dc.relationJournal of Experimental Nanoscience
dc.rightsfechado
dc.sourceScopus
dc.titleCobalt Nanoparticles Prepared By Three Different Methods
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución