Artículos de revistas
Periodic Orbits For A Class Of C 1 Three-dimensional Systems
Registro en:
Rendiconti Del Circolo Matematico Di Palermo. , v. 56, n. 1, p. 101 - 115, 2007.
0009725X
10.1007/BF03031432
2-s2.0-84859840317
Autor
Ferragut A.
Llibre J.
Teixeira M.A.
Institución
Resumen
We study C 1 perturbations of a reversible polynomial differential system of degree 4 in ℝ 3. We introduce the concept of strongly reversible vector field. If the perturbation is strongly reversible, the dynamics of the perturbed system does not change. For non-strongly reversible perturbations we prove the existence of an arbitrary number of symmetric periodic orbits. Additionally, we provide a polynomial vector field of degree 4 in ℝ 3 with infinitely many limit cycles in a bounded domain if a generic assumption is satisfied. © 2007 Springer. 56 1 101 115 Arnold, V.I., (1989) Mathematical Methods of Classical Mechanics, 60. , second editionth edn., Graduate Texts in Mathematics, New York: Springer-Verlag Arnold, V.I., Avez, A., (1967) Problemes Ergodiques De La mécanique Classique, , Paris: Gauthier-Villars Birkhoff, G.D., Proof of the Poincaré's last geometric theorem (1913) Trans. Amer. Math. Soc., 14, pp. 14-22 Birkhoff, G.D., An extension of the Poincaré's last geometric theorem (1925) Acta Math., 47, pp. 297-311 Brown, M., von Newmann, W.D., Proof of the Poincaré-Birkhoff fixed point theorem (1977) Michigan Math. J., 24, pp. 21-31 Buzzi, C.A., Llibre, J., Medrado, J.C., Periodic orbits for a class of reversible quadratic vector field R 3, , to appear in J. Math. Anal. and Appl Franks, J., Recurrence and fixed points in surface homeomorphisms (1988) Erg. Theorey Dyn. Sys., 8, pp. 99-108 Guckenheimer, J., Holmes, P., (1990) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 42. , Applied Mathematical Sciences, New York: Springer-Verlag Meyer, K.R., Hall, G.R., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem (1992) Applied Mathematical Sciences 90, , Springer-Verlag Poincaré, H., Sur un theoreme de geometrie (1912) Rend. Circ. Math. Palermo, 33, pp. 375-407