dc.creatorFerragut A.
dc.creatorLlibre J.
dc.creatorTeixeira M.A.
dc.date2007
dc.date2015-06-30T18:37:09Z
dc.date2015-11-26T14:30:22Z
dc.date2015-06-30T18:37:09Z
dc.date2015-11-26T14:30:22Z
dc.date.accessioned2018-03-28T21:33:40Z
dc.date.available2018-03-28T21:33:40Z
dc.identifier
dc.identifierRendiconti Del Circolo Matematico Di Palermo. , v. 56, n. 1, p. 101 - 115, 2007.
dc.identifier0009725X
dc.identifier10.1007/BF03031432
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84859840317&partnerID=40&md5=dd4b989ae825e6ed6972ae2667980447
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104014
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104014
dc.identifier2-s2.0-84859840317
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247089
dc.descriptionWe study C 1 perturbations of a reversible polynomial differential system of degree 4 in ℝ 3. We introduce the concept of strongly reversible vector field. If the perturbation is strongly reversible, the dynamics of the perturbed system does not change. For non-strongly reversible perturbations we prove the existence of an arbitrary number of symmetric periodic orbits. Additionally, we provide a polynomial vector field of degree 4 in ℝ 3 with infinitely many limit cycles in a bounded domain if a generic assumption is satisfied. © 2007 Springer.
dc.description56
dc.description1
dc.description101
dc.description115
dc.descriptionArnold, V.I., (1989) Mathematical Methods of Classical Mechanics, 60. , second editionth edn., Graduate Texts in Mathematics, New York: Springer-Verlag
dc.descriptionArnold, V.I., Avez, A., (1967) Problemes Ergodiques De La mécanique Classique, , Paris: Gauthier-Villars
dc.descriptionBirkhoff, G.D., Proof of the Poincaré's last geometric theorem (1913) Trans. Amer. Math. Soc., 14, pp. 14-22
dc.descriptionBirkhoff, G.D., An extension of the Poincaré's last geometric theorem (1925) Acta Math., 47, pp. 297-311
dc.descriptionBrown, M., von Newmann, W.D., Proof of the Poincaré-Birkhoff fixed point theorem (1977) Michigan Math. J., 24, pp. 21-31
dc.descriptionBuzzi, C.A., Llibre, J., Medrado, J.C., Periodic orbits for a class of reversible quadratic vector field R 3, , to appear in J. Math. Anal. and Appl
dc.descriptionFranks, J., Recurrence and fixed points in surface homeomorphisms (1988) Erg. Theorey Dyn. Sys., 8, pp. 99-108
dc.descriptionGuckenheimer, J., Holmes, P., (1990) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 42. , Applied Mathematical Sciences, New York: Springer-Verlag
dc.descriptionMeyer, K.R., Hall, G.R., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem (1992) Applied Mathematical Sciences 90, , Springer-Verlag
dc.descriptionPoincaré, H., Sur un theoreme de geometrie (1912) Rend. Circ. Math. Palermo, 33, pp. 375-407
dc.languageen
dc.publisher
dc.relationRendiconti del Circolo Matematico di Palermo
dc.rightsfechado
dc.sourceScopus
dc.titlePeriodic Orbits For A Class Of C 1 Three-dimensional Systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución