dc.creator | Ferragut A. | |
dc.creator | Llibre J. | |
dc.creator | Teixeira M.A. | |
dc.date | 2007 | |
dc.date | 2015-06-30T18:37:09Z | |
dc.date | 2015-11-26T14:30:22Z | |
dc.date | 2015-06-30T18:37:09Z | |
dc.date | 2015-11-26T14:30:22Z | |
dc.date.accessioned | 2018-03-28T21:33:40Z | |
dc.date.available | 2018-03-28T21:33:40Z | |
dc.identifier | | |
dc.identifier | Rendiconti Del Circolo Matematico Di Palermo. , v. 56, n. 1, p. 101 - 115, 2007. | |
dc.identifier | 0009725X | |
dc.identifier | 10.1007/BF03031432 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84859840317&partnerID=40&md5=dd4b989ae825e6ed6972ae2667980447 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/104014 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/104014 | |
dc.identifier | 2-s2.0-84859840317 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1247089 | |
dc.description | We study C 1 perturbations of a reversible polynomial differential system of degree 4 in ℝ 3. We introduce the concept of strongly reversible vector field. If the perturbation is strongly reversible, the dynamics of the perturbed system does not change. For non-strongly reversible perturbations we prove the existence of an arbitrary number of symmetric periodic orbits. Additionally, we provide a polynomial vector field of degree 4 in ℝ 3 with infinitely many limit cycles in a bounded domain if a generic assumption is satisfied. © 2007 Springer. | |
dc.description | 56 | |
dc.description | 1 | |
dc.description | 101 | |
dc.description | 115 | |
dc.description | Arnold, V.I., (1989) Mathematical Methods of Classical Mechanics, 60. , second editionth edn., Graduate Texts in Mathematics, New York: Springer-Verlag | |
dc.description | Arnold, V.I., Avez, A., (1967) Problemes Ergodiques De La mécanique Classique, , Paris: Gauthier-Villars | |
dc.description | Birkhoff, G.D., Proof of the Poincaré's last geometric theorem (1913) Trans. Amer. Math. Soc., 14, pp. 14-22 | |
dc.description | Birkhoff, G.D., An extension of the Poincaré's last geometric theorem (1925) Acta Math., 47, pp. 297-311 | |
dc.description | Brown, M., von Newmann, W.D., Proof of the Poincaré-Birkhoff fixed point theorem (1977) Michigan Math. J., 24, pp. 21-31 | |
dc.description | Buzzi, C.A., Llibre, J., Medrado, J.C., Periodic orbits for a class of reversible quadratic vector field R 3, , to appear in J. Math. Anal. and Appl | |
dc.description | Franks, J., Recurrence and fixed points in surface homeomorphisms (1988) Erg. Theorey Dyn. Sys., 8, pp. 99-108 | |
dc.description | Guckenheimer, J., Holmes, P., (1990) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 42. , Applied Mathematical Sciences, New York: Springer-Verlag | |
dc.description | Meyer, K.R., Hall, G.R., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem (1992) Applied Mathematical Sciences 90, , Springer-Verlag | |
dc.description | Poincaré, H., Sur un theoreme de geometrie (1912) Rend. Circ. Math. Palermo, 33, pp. 375-407 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Rendiconti del Circolo Matematico di Palermo | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Periodic Orbits For A Class Of C 1 Three-dimensional Systems | |
dc.type | Artículos de revistas | |