Artículos de revistas
The Zn2 Position In Metallo-β-lactamases Is Critical For Activity: A Study On Chimeric Metal Sites On A Conserved Protein Scaffold
Registro en:
Journal Of Molecular Biology. , v. 373, n. 5, p. 1141 - 1156, 2007.
222836
10.1016/j.jmb.2007.08.031
2-s2.0-35148836146
Autor
Gonzalez J.M.
Medrano Martin F.J.
Costello A.L.
Tierney D.L.
Vila A.J.
Institución
Resumen
Metallo-β-lactamases (MβLs) are bacterial Zn(II)-dependent hydrolases that confer broad-spectrum resistance to β-lactam antibiotics. These enzymes can be subdivided into three subclasses (B1, B2 and B3) that differ in their metal binding sites and their characteristic tertiary structure. To date there are no clinically useful pan-MβL inhibitors available, mainly due to the unawareness of key catalytic features common to all MβL brands. Here we have designed, expressed and characterized two double mutants of BcII, a di-Zn(II) B1-MβL from Bacillus cereus, namely BcII-R121H/C221D (BcII-HD) and BcII-R121H/C221S (BcII-HS). These mutants display modified environments at the so-called Zn2 site or DCH site, reproducing the metal coordination environments of structurally related metallohydrolases. Through a combination of structural and functional studies, we found that BcII-HD is an impaired β-lactamase even as a di-Zn(II) enzyme, whereas BcII-HS exhibits the ability to exist as mono or di-Zn(II) species in solution, with different catalytic performances. We show that these effects result from an altered position of Zn2, which is incapable of providing a productive interaction with the substrate β-lactam ring. These results indicate that the position of Zn2 is essential for a productive substrate binding and hydrolysis. © 2007 Elsevier Ltd. All rights reserved. 373 5 1141 1156 Fisher, J.F., Meroueh, S.O., Mobashery, S., Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity (2005) Chem. Rev., 105, pp. 395-424 Frere, J.M., Beta lactamases and bacterial resstance to antibiotics (1995) Mol. Microbiol., 16, pp. 385-395 Wilke, M.S., Lovering, A.L., Strynadka, N.C., beta-Lactam antibiotic resistance: a current structural perspective (2005) Curr. Opin. Microbiol., 8, pp. 525-533 Page, M.I., Laws, A.P., The mechanism of catalysis and the inhibition of beta-lactamases (1998) J. Chem. Soc. Chem. Commun., 1998, pp. 1609-1617 Strynadka, N.C., Adachi, H., Jensen, S.E., Johns, K., Sielecki, A., Betzel, C., Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 Å resolution (1992) Nature, 359, pp. 700-705 Sulton, D., Pagan-Roderiguez, D., Zhou, X., Liu, Y., Hujer, A.M., Bethel, C.R., Clavulanic acid inactivation of SHV-1 and the inhibitor resistant SER130GLY SHV-1 beta-lactamase: insights into the mechanism of inhibition (2005) J. Biol. Chem., 280, pp. 35528-35536 Crowder, M.W., Spencer, J., Vila, A.J., Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria (2006) Acc. Chem. Res., 39, pp. 721-728 Wang, Z., Fast, W., Valentine, A.M., Benkovic, S.J., Metallo-β-lactamase: structure and mechanism (1999) Curr. Opin. Chem. Biol., 3, pp. 614-622 Walsh, T.R., Toleman, M.A., Poirel, L., Nordmann, P., Metallo-beta-lactamases: the quiet before the storm? (2005) Clin. Microbiol. Rev., 18, pp. 306-325 Heinz, U., Adolph, H.W., Metallo-beta-lactamases: two binding sites for one catalytic metal ion? (2004) Cell Mol. Life Sci., 61, pp. 2827-2839 Toney, J.H., Moloughney, J.G., Metallo-beta-lactamase inhibitors: promise for the future? (2004) Curr. Opin. Investig. Drugs, 5, pp. 823-826 Daiyasu, H., Osaka, K., Ishino, Y., Toh, H., Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold (2001) FEBS Letters, 503, pp. 1-6 Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frère, J.M., Dideberg, O., The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold (1995) EMBO J., 14, pp. 4914-4921 Galleni, M., Lamotte-Brasseur, J., Rossolini, G.M., Spencer, J., Dideberg, O., Frere, J.M., Standard numbering scheme for class B beta-lactamases (2001) Antimicrob. Agents Chemother., 45, pp. 660-663 Garau, G., Di Guilmi, A.M., Hall, B.G., Structure-based phylogeny of the metallo-beta-lactamases (2005) Antimicrob. Agents Chemother., 49, pp. 2778-2784 Fabiane, S.M., Sohi, M.K., Wan, T., Payne, D.J., Bateson, J.H., Mitchell, T., Sutton, B.J., Crystal structure of the zinc-dependent beta lactamase from Bacillus cereus at 1.9 Å resolution: binuclear active site with features of a mononuclear enzime (1998) Biochemistry, 37, pp. 12404-12411 Toney, J.H., Hammond, G.G., Fitzgerald, P.M., Sharma, N., Balkovec, J.M., Rouen, G.P., Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase (2001) J. Biol. Chem., 276, pp. 31913-31918 Ullah, J.H., Walsh, T.R., Taylor, I.A., Emery, D.C., Verma, C.S., Gamblin, S.J., Spencer, J., The crystal strucuture of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution (1998) J. Mol. Biol., 284, pp. 125-136 Garcia-Saez, I., Mercuri, P.S., Papamicael, C., Kahn, R., Frere, J.M., Galleni, M., Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril (2003) J. Mol. Biol., 325, pp. 651-660 Murphy, T.A., Catto, L.E., Halford, S.E., Hadfield, A. T., Minor, W., Walsh, T.R., Spencer, J., Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases (2006) J. Mol. Biol., 357, pp. 890-903 Garau, G., Bebrone, C., Anne, C., Galleni, M., Frere, J.M., Dideberg, O., A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem (2005) J. Mol. Biol., 345, pp. 785-795 Sharma, N.P., Hajdin, C., Chandrasekar, S., Bennett, B., Yang, K.W., Crowder, M.W., Mechanistic studies on the mononuclear Zn(II)-containing metallo-beta-lactamase ImiS from Aeromonas sobria (2006) Biochemistry, 45, pp. 10729-10738 Crawford, P.A., Yang, K.W., Sharma, N., Bennett, B., Crowder, M.W., Spectroscopic studies on cobalt(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria (2005) Biochemistry, 44, pp. 5168-5176 Bebrone, C., Anne, C., De Vriendt, K., Devreese, B., Rossolini, G.M., van Beeumen, J., Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis (2005) J. Biol. Chem., 280, pp. 28195-28202 Bounaga, S., Laws, A.P., Galleni, M., Page, M.I., The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase (1998) Biochem. J., 31, pp. 703-711 Wang, Z., Fast, W., Benkovic, S.J., On the mechanism of the metallo-β-lactamase from Bacteroides fragilis (1999) Biochemistry, 38, pp. 10013-10023 Spencer, J., Read, J., Sessions, R.B., Howell, S., Blackburn, G.M., Gamblin, S.J., Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography (2005) J. Am. Chem. Soc., 127, pp. 14439-14444 Xu, D., Xie, D., Guo, H., Catalytic mechanism of class B2 metallo-beta-lactamase (2006) J. Biol. Chem., 281, pp. 8740-8747 Rasia, R.M., Vila, A.J., Exploring the role and the binding affinity of a second zinc equivalent in B. cereus metallo-beta-lactamase (2002) Biochemistry, 41, pp. 1853-1860 Morán-Barrio, J., González, J.M., Lisa, M.N., Costello, A.L., Peraro, M.D., Carloni, P., The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site (2007) J. Biol. Chem., 282 (25), pp. 18286-18293 Cameron, A.D., Ridderstrom, M., Olin, B., Mannervik, B., Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue (1999) Structure Fold. Des., 7, pp. 1067-1078 Thomas, P.W., Stone, E.M., Costello, A.L., Tierney, D.L., Fast, W., The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein (2005) Biochemistry, 44, pp. 7559-7569 Hagelueken, G., Adams, T.M., Wiehlmann, L., Widow, U., Kolmar, H., Tummler, B., The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 7631-7636 Park, H.S., Nam, S.H., Lee, J.K., Yoon, C.N., Mannervik, B., Benkovic, S.J., Kim, H.S., Design and evolution of new catalytic activity with an existing protein scaffold (2006) Science, 311, pp. 535-538 Seny, D., Prosperi-Meys, C., Bebrone, C., Rossolini, G.M., Page, M.I., Noel, P., Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase (2002) Biochem. J., 363, pp. 687-696 Paul-Soto, R., Bauer, R., Frere, J.M., Galleni, M., Meyer-Klaucke, W., Nolting, H., Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism (1999) J. Biol. Chem., 274, pp. 13242-13249 Garrity, J.D., Carenbauer, A.L., Herron, L.R., Crowder, M.W., Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis (2004) J. Biol. Chem., 279, pp. 920-927 Yanchak, M.P., Taylor, R.A., Crowder, M.W., Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis (2000) Biochemistry, 39, pp. 11330-11339 Vanhove, M., Zakhem, M., Devreese, B., Franceschini, N., Anne, C., Bebrone, C., Role of Cys221 and Asn116 in the zinc-binding sites of the Aeromonas hydrophila metallo-beta-lactamase (2003) Cell Mol. Life Sci., 60, pp. 2501-2509 Rasia, R.M., Ceolin, M., Vila, A.J., Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity (2003) Protein Sci., 12, pp. 1538-1546 de Seny, D., Heinz, U., Wommer, S., Kiefer, M., Meyer-Klaucke, W., Galleni, M., Metal ion binding and coordination geometry for wild type and mutants of metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII): a combined thermodynamic, kinetic, and spectroscopic approach (2001) J. Biol. Chem., 276, pp. 45065-45078 Davies, A.M., Rasia, R.M., Vila, A.J., Sutton, B.J., Fabiane, S.M., Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism (2005) Biochemistry, 44, pp. 4841-4849 Costello, A., Periyannan, G., Yang, K.W., Crowder, M.W., Tierney, D.L., Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia (2006) J. Biol. Inorg. Chem., 11, pp. 351-358 Yang, Y., Keeney, D., Tang, X., Canfield, N., Rasmussen, B.A., Kinetic properties and metal content of the metallo-β-lacatamase CcrA harboring selective amino acid substitutions (1999) J. Biol. Chem., 274, pp. 15706-15711 Llarrull, L.I., Fabiane, S.M., Kowalski, J.M., Bennett, B., Sutton, B.J., Vila, A.J., Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity (2007) J. Biol. Chem., 282 (25), pp. 18276-18285 Liu, D., Lepore, B.W., Petsko, G.A., Thomas, P.W., Stone, E.M., Fast, W., Ringe, D., Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 11882-11887 Dal Peraro, M., Vila, A.J., Carloni, P., Klein, M.L., Role of zinc content on the catalytic efficiency of B1 metallo-beta-lactamases (2007) J. Am. Chem Soc., 129, pp. 2808-2812 Dal Peraro, M., Vila, A.J., Carloni, P., Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus (2004) Proteins: Struct. Funct. Genet., 54, pp. 412-423 Dal Peraro, M., Llarrull, L.I., Rothlisberger, U., Vila, A.J., Carloni, P., Water-assisted reaction mechanism of monozinc beta-lactamases (2004) J. Am. Chem. Soc., 126, pp. 12661-12668 Chantalat, L., Duee, E., Galleni, M., Frere, J.M., Dideberg, O., Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase (2000) Protein Sci., 9, pp. 1402-1406 Hall, B.G., Salipante, S.J., Barlow, M., Independent origins of subgroup Bl+ B2 and subgroup B3 metallo-beta-lactamases (2004) J. Mol. Evol., 59, pp. 133-141 Orellano, E.G., Girardini, J.E., Cricco, J.A., Ceccarelli, E.A., Vila, A.J., Spectroscopic characterization of a binuclear metal site in Bacillus cereus beta-lactamase II (1998) Biochemistry, 37, pp. 10173-10180 Hunt, J.B., Neece, S.H., Ginsburg, A., The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase (1985) Anal. Biochem., 146, pp. 150-157 Kuzmic, P., Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase (1996) Anal. Biochem., 237, pp. 260-273 Shulz, A.R., A closer look to the basic assumptions (1994) Enzyme Kinetics, from Diastase to Multi-enzyme Systems, pp. 22-48. , Cambridge University Press, Cambridge Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-325 Collaborative Computational Project Number 4, The CCP4 suite: programs for protein crystallography (1994) Acta Crystallog. sect. D, Biol. Crystallogr., 50, pp. 760-763 Navaza, J., AMoRe: an automated package for molecular replacement (1994) Acta Crystallog. sect. D, Bi55, pp. 247-255 Murshudov, G.N., Vagin, A.A., Dodson, E.J., Refinement of macromolecular structures by the maximum-likelihood method (1997) Acta Crystallog. sect. D, 53, pp. 240-255 Laskowski, R.A., Mac Arthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallog., 26, pp. 283-291 Ankudinov, A.L., Ravel, B., Rehr, J.J., Conradson, S.D., Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure (1998) Phys. Rev. ser. B, 58, pp. 7565-7576 McClure, C.P., Rusche, K.M., Peariso, K., Jackman, J.E., Fierke, C.A., Penner-Hahn, J.E., EXAFS studies of the zinc sites of UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC) (2003) J. Inorg. Biochem., 94, pp. 78-85