Brasil | Artículos de revistas
dc.creatorGonzalez J.M.
dc.creatorMedrano Martin F.J.
dc.creatorCostello A.L.
dc.creatorTierney D.L.
dc.creatorVila A.J.
dc.date2007
dc.date2015-06-30T18:36:49Z
dc.date2015-11-26T14:30:10Z
dc.date2015-06-30T18:36:49Z
dc.date2015-11-26T14:30:10Z
dc.date.accessioned2018-03-28T21:33:27Z
dc.date.available2018-03-28T21:33:27Z
dc.identifier
dc.identifierJournal Of Molecular Biology. , v. 373, n. 5, p. 1141 - 1156, 2007.
dc.identifier222836
dc.identifier10.1016/j.jmb.2007.08.031
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-35148836146&partnerID=40&md5=f2f64e68012be4b534fdacd6c6eb1063
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103990
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103990
dc.identifier2-s2.0-35148836146
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247032
dc.descriptionMetallo-β-lactamases (MβLs) are bacterial Zn(II)-dependent hydrolases that confer broad-spectrum resistance to β-lactam antibiotics. These enzymes can be subdivided into three subclasses (B1, B2 and B3) that differ in their metal binding sites and their characteristic tertiary structure. To date there are no clinically useful pan-MβL inhibitors available, mainly due to the unawareness of key catalytic features common to all MβL brands. Here we have designed, expressed and characterized two double mutants of BcII, a di-Zn(II) B1-MβL from Bacillus cereus, namely BcII-R121H/C221D (BcII-HD) and BcII-R121H/C221S (BcII-HS). These mutants display modified environments at the so-called Zn2 site or DCH site, reproducing the metal coordination environments of structurally related metallohydrolases. Through a combination of structural and functional studies, we found that BcII-HD is an impaired β-lactamase even as a di-Zn(II) enzyme, whereas BcII-HS exhibits the ability to exist as mono or di-Zn(II) species in solution, with different catalytic performances. We show that these effects result from an altered position of Zn2, which is incapable of providing a productive interaction with the substrate β-lactam ring. These results indicate that the position of Zn2 is essential for a productive substrate binding and hydrolysis. © 2007 Elsevier Ltd. All rights reserved.
dc.description373
dc.description5
dc.description1141
dc.description1156
dc.descriptionFisher, J.F., Meroueh, S.O., Mobashery, S., Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity (2005) Chem. Rev., 105, pp. 395-424
dc.descriptionFrere, J.M., Beta lactamases and bacterial resstance to antibiotics (1995) Mol. Microbiol., 16, pp. 385-395
dc.descriptionWilke, M.S., Lovering, A.L., Strynadka, N.C., beta-Lactam antibiotic resistance: a current structural perspective (2005) Curr. Opin. Microbiol., 8, pp. 525-533
dc.descriptionPage, M.I., Laws, A.P., The mechanism of catalysis and the inhibition of beta-lactamases (1998) J. Chem. Soc. Chem. Commun., 1998, pp. 1609-1617
dc.descriptionStrynadka, N.C., Adachi, H., Jensen, S.E., Johns, K., Sielecki, A., Betzel, C., Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 Å resolution (1992) Nature, 359, pp. 700-705
dc.descriptionSulton, D., Pagan-Roderiguez, D., Zhou, X., Liu, Y., Hujer, A.M., Bethel, C.R., Clavulanic acid inactivation of SHV-1 and the inhibitor resistant SER130GLY SHV-1 beta-lactamase: insights into the mechanism of inhibition (2005) J. Biol. Chem., 280, pp. 35528-35536
dc.descriptionCrowder, M.W., Spencer, J., Vila, A.J., Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria (2006) Acc. Chem. Res., 39, pp. 721-728
dc.descriptionWang, Z., Fast, W., Valentine, A.M., Benkovic, S.J., Metallo-β-lactamase: structure and mechanism (1999) Curr. Opin. Chem. Biol., 3, pp. 614-622
dc.descriptionWalsh, T.R., Toleman, M.A., Poirel, L., Nordmann, P., Metallo-beta-lactamases: the quiet before the storm? (2005) Clin. Microbiol. Rev., 18, pp. 306-325
dc.descriptionHeinz, U., Adolph, H.W., Metallo-beta-lactamases: two binding sites for one catalytic metal ion? (2004) Cell Mol. Life Sci., 61, pp. 2827-2839
dc.descriptionToney, J.H., Moloughney, J.G., Metallo-beta-lactamase inhibitors: promise for the future? (2004) Curr. Opin. Investig. Drugs, 5, pp. 823-826
dc.descriptionDaiyasu, H., Osaka, K., Ishino, Y., Toh, H., Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold (2001) FEBS Letters, 503, pp. 1-6
dc.descriptionCarfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frère, J.M., Dideberg, O., The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold (1995) EMBO J., 14, pp. 4914-4921
dc.descriptionGalleni, M., Lamotte-Brasseur, J., Rossolini, G.M., Spencer, J., Dideberg, O., Frere, J.M., Standard numbering scheme for class B beta-lactamases (2001) Antimicrob. Agents Chemother., 45, pp. 660-663
dc.descriptionGarau, G., Di Guilmi, A.M., Hall, B.G., Structure-based phylogeny of the metallo-beta-lactamases (2005) Antimicrob. Agents Chemother., 49, pp. 2778-2784
dc.descriptionFabiane, S.M., Sohi, M.K., Wan, T., Payne, D.J., Bateson, J.H., Mitchell, T., Sutton, B.J., Crystal structure of the zinc-dependent beta lactamase from Bacillus cereus at 1.9 Å resolution: binuclear active site with features of a mononuclear enzime (1998) Biochemistry, 37, pp. 12404-12411
dc.descriptionToney, J.H., Hammond, G.G., Fitzgerald, P.M., Sharma, N., Balkovec, J.M., Rouen, G.P., Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase (2001) J. Biol. Chem., 276, pp. 31913-31918
dc.descriptionUllah, J.H., Walsh, T.R., Taylor, I.A., Emery, D.C., Verma, C.S., Gamblin, S.J., Spencer, J., The crystal strucuture of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution (1998) J. Mol. Biol., 284, pp. 125-136
dc.descriptionGarcia-Saez, I., Mercuri, P.S., Papamicael, C., Kahn, R., Frere, J.M., Galleni, M., Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril (2003) J. Mol. Biol., 325, pp. 651-660
dc.descriptionMurphy, T.A., Catto, L.E., Halford, S.E., Hadfield, A. T., Minor, W., Walsh, T.R., Spencer, J., Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases (2006) J. Mol. Biol., 357, pp. 890-903
dc.descriptionGarau, G., Bebrone, C., Anne, C., Galleni, M., Frere, J.M., Dideberg, O., A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem (2005) J. Mol. Biol., 345, pp. 785-795
dc.descriptionSharma, N.P., Hajdin, C., Chandrasekar, S., Bennett, B., Yang, K.W., Crowder, M.W., Mechanistic studies on the mononuclear Zn(II)-containing metallo-beta-lactamase ImiS from Aeromonas sobria (2006) Biochemistry, 45, pp. 10729-10738
dc.descriptionCrawford, P.A., Yang, K.W., Sharma, N., Bennett, B., Crowder, M.W., Spectroscopic studies on cobalt(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria (2005) Biochemistry, 44, pp. 5168-5176
dc.descriptionBebrone, C., Anne, C., De Vriendt, K., Devreese, B., Rossolini, G.M., van Beeumen, J., Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis (2005) J. Biol. Chem., 280, pp. 28195-28202
dc.descriptionBounaga, S., Laws, A.P., Galleni, M., Page, M.I., The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase (1998) Biochem. J., 31, pp. 703-711
dc.descriptionWang, Z., Fast, W., Benkovic, S.J., On the mechanism of the metallo-β-lactamase from Bacteroides fragilis (1999) Biochemistry, 38, pp. 10013-10023
dc.descriptionSpencer, J., Read, J., Sessions, R.B., Howell, S., Blackburn, G.M., Gamblin, S.J., Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography (2005) J. Am. Chem. Soc., 127, pp. 14439-14444
dc.descriptionXu, D., Xie, D., Guo, H., Catalytic mechanism of class B2 metallo-beta-lactamase (2006) J. Biol. Chem., 281, pp. 8740-8747
dc.descriptionRasia, R.M., Vila, A.J., Exploring the role and the binding affinity of a second zinc equivalent in B. cereus metallo-beta-lactamase (2002) Biochemistry, 41, pp. 1853-1860
dc.descriptionMorán-Barrio, J., González, J.M., Lisa, M.N., Costello, A.L., Peraro, M.D., Carloni, P., The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site (2007) J. Biol. Chem., 282 (25), pp. 18286-18293
dc.descriptionCameron, A.D., Ridderstrom, M., Olin, B., Mannervik, B., Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue (1999) Structure Fold. Des., 7, pp. 1067-1078
dc.descriptionThomas, P.W., Stone, E.M., Costello, A.L., Tierney, D.L., Fast, W., The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein (2005) Biochemistry, 44, pp. 7559-7569
dc.descriptionHagelueken, G., Adams, T.M., Wiehlmann, L., Widow, U., Kolmar, H., Tummler, B., The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 7631-7636
dc.descriptionPark, H.S., Nam, S.H., Lee, J.K., Yoon, C.N., Mannervik, B., Benkovic, S.J., Kim, H.S., Design and evolution of new catalytic activity with an existing protein scaffold (2006) Science, 311, pp. 535-538
dc.descriptionSeny, D., Prosperi-Meys, C., Bebrone, C., Rossolini, G.M., Page, M.I., Noel, P., Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase (2002) Biochem. J., 363, pp. 687-696
dc.descriptionPaul-Soto, R., Bauer, R., Frere, J.M., Galleni, M., Meyer-Klaucke, W., Nolting, H., Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism (1999) J. Biol. Chem., 274, pp. 13242-13249
dc.descriptionGarrity, J.D., Carenbauer, A.L., Herron, L.R., Crowder, M.W., Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis (2004) J. Biol. Chem., 279, pp. 920-927
dc.descriptionYanchak, M.P., Taylor, R.A., Crowder, M.W., Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis (2000) Biochemistry, 39, pp. 11330-11339
dc.descriptionVanhove, M., Zakhem, M., Devreese, B., Franceschini, N., Anne, C., Bebrone, C., Role of Cys221 and Asn116 in the zinc-binding sites of the Aeromonas hydrophila metallo-beta-lactamase (2003) Cell Mol. Life Sci., 60, pp. 2501-2509
dc.descriptionRasia, R.M., Ceolin, M., Vila, A.J., Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity (2003) Protein Sci., 12, pp. 1538-1546
dc.descriptionde Seny, D., Heinz, U., Wommer, S., Kiefer, M., Meyer-Klaucke, W., Galleni, M., Metal ion binding and coordination geometry for wild type and mutants of metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII): a combined thermodynamic, kinetic, and spectroscopic approach (2001) J. Biol. Chem., 276, pp. 45065-45078
dc.descriptionDavies, A.M., Rasia, R.M., Vila, A.J., Sutton, B.J., Fabiane, S.M., Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism (2005) Biochemistry, 44, pp. 4841-4849
dc.descriptionCostello, A., Periyannan, G., Yang, K.W., Crowder, M.W., Tierney, D.L., Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia (2006) J. Biol. Inorg. Chem., 11, pp. 351-358
dc.descriptionYang, Y., Keeney, D., Tang, X., Canfield, N., Rasmussen, B.A., Kinetic properties and metal content of the metallo-β-lacatamase CcrA harboring selective amino acid substitutions (1999) J. Biol. Chem., 274, pp. 15706-15711
dc.descriptionLlarrull, L.I., Fabiane, S.M., Kowalski, J.M., Bennett, B., Sutton, B.J., Vila, A.J., Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity (2007) J. Biol. Chem., 282 (25), pp. 18276-18285
dc.descriptionLiu, D., Lepore, B.W., Petsko, G.A., Thomas, P.W., Stone, E.M., Fast, W., Ringe, D., Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 11882-11887
dc.descriptionDal Peraro, M., Vila, A.J., Carloni, P., Klein, M.L., Role of zinc content on the catalytic efficiency of B1 metallo-beta-lactamases (2007) J. Am. Chem Soc., 129, pp. 2808-2812
dc.descriptionDal Peraro, M., Vila, A.J., Carloni, P., Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus (2004) Proteins: Struct. Funct. Genet., 54, pp. 412-423
dc.descriptionDal Peraro, M., Llarrull, L.I., Rothlisberger, U., Vila, A.J., Carloni, P., Water-assisted reaction mechanism of monozinc beta-lactamases (2004) J. Am. Chem. Soc., 126, pp. 12661-12668
dc.descriptionChantalat, L., Duee, E., Galleni, M., Frere, J.M., Dideberg, O., Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase (2000) Protein Sci., 9, pp. 1402-1406
dc.descriptionHall, B.G., Salipante, S.J., Barlow, M., Independent origins of subgroup Bl+ B2 and subgroup B3 metallo-beta-lactamases (2004) J. Mol. Evol., 59, pp. 133-141
dc.descriptionOrellano, E.G., Girardini, J.E., Cricco, J.A., Ceccarelli, E.A., Vila, A.J., Spectroscopic characterization of a binuclear metal site in Bacillus cereus beta-lactamase II (1998) Biochemistry, 37, pp. 10173-10180
dc.descriptionHunt, J.B., Neece, S.H., Ginsburg, A., The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase (1985) Anal. Biochem., 146, pp. 150-157
dc.descriptionKuzmic, P., Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase (1996) Anal. Biochem., 237, pp. 260-273
dc.descriptionShulz, A.R., A closer look to the basic assumptions (1994) Enzyme Kinetics, from Diastase to Multi-enzyme Systems, pp. 22-48. , Cambridge University Press, Cambridge
dc.descriptionOtwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-325
dc.descriptionCollaborative Computational Project Number 4, The CCP4 suite: programs for protein crystallography (1994) Acta Crystallog. sect. D, Biol. Crystallogr., 50, pp. 760-763
dc.descriptionNavaza, J., AMoRe: an automated package for molecular replacement (1994) Acta Crystallog. sect. D, Bi55, pp. 247-255
dc.descriptionMurshudov, G.N., Vagin, A.A., Dodson, E.J., Refinement of macromolecular structures by the maximum-likelihood method (1997) Acta Crystallog. sect. D, 53, pp. 240-255
dc.descriptionLaskowski, R.A., Mac Arthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallog., 26, pp. 283-291
dc.descriptionAnkudinov, A.L., Ravel, B., Rehr, J.J., Conradson, S.D., Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure (1998) Phys. Rev. ser. B, 58, pp. 7565-7576
dc.descriptionMcClure, C.P., Rusche, K.M., Peariso, K., Jackman, J.E., Fierke, C.A., Penner-Hahn, J.E., EXAFS studies of the zinc sites of UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC) (2003) J. Inorg. Biochem., 94, pp. 78-85
dc.languageen
dc.publisher
dc.relationJournal of Molecular Biology
dc.rightsfechado
dc.sourceScopus
dc.titleThe Zn2 Position In Metallo-β-lactamases Is Critical For Activity: A Study On Chimeric Metal Sites On A Conserved Protein Scaffold
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución