Artículos de revistas
Mitochondrial Ca2+ Transport, Permeability Transition And Oxidative Stress In Cell Death: Implications In Cardiotoxicity, Neurodegeneration And Dyslipidemias
Registro en:
Frontiers In Bioscience. , v. 11, n. SUPPL. 2, p. 2554 - 2564, 2006.
10939946
10.2741/1990
2-s2.0-33744492597
Autor
Vercesi A.E.
Kowaltowski A.J.
Oliveira H.C.F.
Castilho R.F.
Institución
Resumen
Mitochondrial Ca2+ transport is important in the maintenance of intracellular ion homeostasis, and also a key factor in the pathogenesis of many diseases. We discuss here the main aspects of mitochondrial Ca2+ transport, and how this transport is linked to changes in energy metabolism and redox state. Mitochondrial permeability transition, a consequence of excessive mitochondrial Ca2+ accumulation associated with oxidative stress is also discussed. Finally, our current understanding of the involvement of these mitochondrial processes in cardiac ischemia-reperfusion, neurodegeneration and dyslipidemias is presented. 11 SUPPL. 2 2554 2564 Crow, M.T., Mani, K., Nam, Y.J., Kitsis, R.N., The mitochondrial death pathway and cardiac myocyte apoptosis (2004) Circ Res, 95, pp. 957-970 Jiang, X., Wang, X., Cytochrome c-mediated apoptosis (2004) Annu Rev Biochem, 73, pp. 87-106 Polster, B.M., Fiskum, G., Mitochondrial mechanisms of neural cell apoptosis (2004) J Neurochem, 90, pp. 1281-1289 Green, D.R., Kroemer, G., The pathophysiology of mitochondrial cell death (2004) Science, 305, pp. 626-629 Bouchier-Hayes, L., Lartigue, L., Newmeyer, D.D., Mitochondria, pharmacological manipulation of cell death (2005) J Clin Invest, 115, pp. 2640-2647 Lemasters, J.J., Dying a thousand deaths, redundant pathways from different organelles to apoptosis and necrosis (2005) Gastroenterology, 129, pp. 351-360 Browne, S.E., Ferrante, R.J., Beal, M.F., Oxidative stress in Huntington's disease (1999) Brain Pathol, 9, pp. 147-163 Beal, M.F., Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatment (2004) J Bioenerg Biomembr, 36, pp. 381-386 Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism (1961) Nature, 191, pp. 144-148 Boveris, A., Mitochondrial production of superoxide radical and hydrogen peroxide (1977) Adv Exp Med Biol, 78, pp. 67-82 Kowaltowski, A.J., Vercesi, A.E., Mitochondrial damage induced by conditions of oxidative stress (1999) Free Radic Biol Med, 26, pp. 463-471 Turrens, J.F., Mitochondrial formation of reactive oxygen species (2003) J Physiol, 552, pp. 335-344 Balaban, R.S., Nemoto, S., Finkel, T., Mitochondria, oxidants, and aging (2005) Cell, 120, pp. 483-495 Brookes, P.S., Mitochondrial H+ leak and ROS generation, an odd couple (2005) Free Radic Biol Med, 38, pp. 12-23 Gunter, T.E., Buntinas, L., Sparagna, G.C., Gunter, K.K., The Ca2+ transport mechanisms of mitochondria and Ca 2+ uptake from physiological-type Ca2+ transients (1998) Biochim Biophys Acta, 1366, pp. 5-15 Lehninger, A.L., Rossi, C.S., Greenwalt, J.W., Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat liver mitochondria (1963) Biochem Biophys Res Commun, 10, pp. 444-448 Chance, B., The energy-linked reaction of calcium with mitochondria (1965) J Biol Chem, 240, pp. 2729-2748 Rizzuto, R., Simpson, A.W., Brini, M., Pozzan, T., Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin (1992) Nature, 358, pp. 325-327 Rizzuto, R., Brini, M., Murgia, M., Pozzan, T., Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria (1993) Science, 262, pp. 744-747 Hansford, R.G., Dehydrogenase activation by Ca2+ in cells and tissues (1991) J Bioenerg Biomembr, 23, pp. 823-854 Kirichok, Y., Krapivinsky, G., Clapham, D.E., The mitochondrial calcium uniporter is a highly selective ion channel (2004) Nature, 427, pp. 360-364 Beutner, G., Sharma, V.K., Giovannucci, D.R., Yule, D.I., Sheu, S.S., Identification of a ryanodine receptor in rat heart mitochondria (2001) J Biol Chem, 276, pp. 21482-21488 Vercesi, A.E., Ca2+ transport and oxidative damage of mitochondria (1993) Braz J Med Biol Res, 26, pp. 441-457 Buntinas, L., Gunter, K.K., Sparagna, G.C., Gunter, T.E., The rapid mode of calcium uptake into heart mitochondria (RaM), comparison to RaM in liver mitochondria (2001) Biochim Biophys Acta, 1504, pp. 248-261 Gunter, T.E., Yule, D.I., Gunter, K.K., Eliseev, R.A., Salter, J.D., Calcium and mitochondria (2004) FEBS Lett, 567, pp. 96-102 St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., Topology of superoxide production from different sites in the mitochondrial electron transport chain (2002) J Biol Chem, 277, pp. 44784-44790 Starkov, A.A., Fiskum, G., Chinopoulos, C., Lorenzo, B.J., Browne, S.E., Patel, M.S., Beal, M.F., Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species (2004) J Neurosci, 24, pp. 7779-7788 Tretter, L., Adam-Vizi, V., Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase (2004) J Neurosci, 24, pp. 7771-7778 Weisiger, R.A., Fridovich, I., Superoxide dismutase. Organelle specificity (1973) J Biol Chem, 248, pp. 3582-3592 Fridovich, I., Superoxide radical and superoxide dismutases (1995) Annu Rev Biochem, 64, pp. 97-112 Okado-Matsumoto, A., Fridovich, I., Subcellular distribution of superoxide dismutases (SOD) in rat liver, Cu,Zn-SOD in mitochondria (2001) J Biol Chem, 276, pp. 38388-38393 Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R., Culotta, V.C., A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage (2001) J Biol Chem, 276, pp. 38084-38089 Halliwell, B., Gutteridge, J.M., Biologically relevant metal ion-dependent hydroxyl radical generation. An update (1992) FEBS Lett, 307, pp. 108-112 Flohe, L., Gunzler, W.A., Schock, H.H., Glutathione peroxidase, a selenoenzyme (1973) FEBS Lett, 32, pp. 132-134 Green, R.C., O'Brien, P.J., The cellular localisation of glutathione peroxidase and its release from mitochondria during swelling (1970) Biochim Biophys Acta, 197, pp. 31-39 Kaufman, Kaplan, N.O., Pyridine nucleotide transhydrogenase. VIII. Properties of the transhydrogenase reactions of an enzyme complex isolated from beef heart mitochondria (1961) J Biol Chem, 236, pp. 2133-2139 Radi, R., Turrens, J.F., Chang, L.Y., Bush, K.M., Crapo, J.D., Freeman, B.A., Detection of catalase in rat heart mitochondria (1991) J Biol Chem, 266, pp. 22028-22034 Rhee, S.G., Kim, K.H., Chae, H.Z., Yim, M.B., Uchida, K., Netto, L.E., Stadtman, E.R., Antioxidant defense mechanisms, a new thiol-specific antioxidant enzyme (1994) Ann N Y Acad Sci, 738, pp. 86-92 Watabe, S., Hasegawa, H., Takimoto, K., Yamamoto, Y., Takahashi, S.Y., Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease, as a radical scavenger (1995) Biochem Biophys Res Commun, 213, pp. 1010-1016 Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., Obeid, L.M., Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2 (1997) J Biol Chem, 272, pp. 30615-30618 Kowaltowski, A.J., Netto, L.E., Vercesi, A.E., The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism (1998) J Biol Chem, 273, pp. 12766-12769 Kowaltowski, A.J., Vercesi, A.E., Rhee, S.G., Netto, L.E., Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca2+-induced mitochondrial membrane permeabilization and cell death (2000) FEBS Lett, 473, pp. 177-182 Monteiro, G., Kowaltowski, A.J., Barros, M.H., Netto, L.E., Glutathione and thioredoxin peroxidases mediate susceptibility of yeast mitochondria to Ca2+-induced damage (2004) Arch Biochem Biophys, 425, pp. 14-24 Stamler, J.S., Redox signaling, nitrosylation and related target interactions of nitric oxide (1994) Cell, 78, pp. 931-936 Bates, T.E., Loesch, A., Burnstock, G., Clark, J.B., Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver (1995) Biochem Biophys Res Commun, 213, pp. 896-900 Kobzik, L., Stringer, B., Balligand, J.L., Reid, M.B., Stamler, J.S., Endothelial type nitric oxide synthase in skeletal muscle fibers, mitochondrial relationships (1995) Biochem Biophys Res Commun, 211, pp. 375-381 Frandsen, U., Lopez-Figueroa, M., Hellsten, Y., Localization of nitric oxide synthase in human skeletal muscle (1996) Biochem Biophys Res Commun, 227, pp. 88-93 Ghafourifar, P., Richter, C., Nitric oxide synthase activity in mitochondria (1997) FEBS Lett, 418, pp. 291-296 Giulivi, C., Poderoso, J.J., Boveris, A., Production of nitric oxide by mitochondria (1998) J Biol Chem, 273, pp. 11038-11043 Tatoyan, A., Giulivi, C., Purification and characterization of a nitric-oxide synthase from rat liver mitochondria (1998) J Biol Chem, 273, pp. 11044-11048 Brookes, P.S., Mitochondrial nitric oxide synthase (2004) Mitochondrion, 3, pp. 187-204 Haynes, V., Elfering, S., Traaseth, N., Giulivi, C., Mitochondrial nitric-oxide synthase, enzyme expression, characterization, and regulation (2004) J Bioenerg Biomembr, 36, pp. 341-346 Ghafourifar, P., Cadenas, E., Mitochondrial nitric oxide synthase (2005) Trends Pharmacol Sci, 26, pp. 190-195 Traaseth, N., Elfering, S., Solien, J., Haynes, V., Giulivi, C., Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle (2004) Biochim Biophys Acta, 1658, pp. 64-71 Trimmer, B.A., Aprille, J.R., Dudzinski, D.M., Lagace, C.J., Lewis, S.M., Michel, T., Qazi, S., Zayas, R.M., Nitric oxide and the control of firefly flashing (2001) Science, 292, pp. 2486-2488 Nisoli, E., Clementi, E., Paolucci, C., Cozzi, V., Tonello, C., Sciorati, C., Bracale, R., Carruba, M.O., Mitochondrial biogenesis in mammals, the role of endogenous nitric oxide (2003) Science, 299, pp. 896-899 Clementi, E., Brown, G.C., Feelisch, M., Moncada, S., Persistent inhibition of cell respiration by nitric oxide, crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione (1998) Proc Natl Acad Sci U S A, 95, pp. 7631-7636 Mannick, J.B., Schonhoff, C., Papeta, N., Ghafourifar, P., Szibor, M., Fang, K., Gaston, B., S-Nitrosylation of mitochondrial caspases (2001) J Cell Biol, 154, pp. 1111-1116 Ghafourifar, P., Schenk, U., Klein, S.D., Richter, C., Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation (1999) J Biol Chem, 274, pp. 31185-31188 Poderoso, J.J., Lisdero, C., Schopfer, F., Riobo, N., Carreras, M.C., Cadenas, E., Boveris, A., The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol (1999) J Biol Chem, 274, pp. 37709-37716 Cadenas, E., Poderoso, J.J., Antunes, F., Boveris, A., Analysis of the Pathways of Nitric Oxide Utilization in Mitochondria (2001) Free Radic Res, 33, pp. 747-756 Boveris, A., Alvarez, S., Navarro, A., The role of mitochondrial nitric oxide synthase in inflammation and septic shock (2002) Free Radic Biol Med, 33, pp. 1186-1193 Radi, R., Cassina, A., Hodara, R., Quijano, C., Castro, L., Peroxynitrite reactions and formation in mitochondria (2002) Free Radic Biol Med, 33, pp. 1451-1464 Bonini, M.G., Radi, R., Ferrer-Sueta, G., Ferreira, A.M., Augusto, O., Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide (1999) J Biol Chem, 274, pp. 10802-10806 Bindoli, A., Lipid peroxidation in mitochondria (1988) Free Radic Biol Med, 5, pp. 247-261 Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P., Yaffee, M., Oxidants in mitochondria, from physiology to diseases (1995) Biochim Biophys Acta, 1271, pp. 67-74 Lenaz, G., Role of mitochondria in oxidative stress and ageing (1998) Biochim Biophys Acta, 1366, pp. 53-67 Cadenas, E., Davies, K.J., Mitochondrial free radical generation, oxidative stress, and aging (2000) Free Radic Biol Med, 29, pp. 222-230 Tyler, D.D., A protective function of superoxide dismutase during respiratory chain activity (1975) Biochim Biophys Acta, 396, pp. 335-346 Schild, L., Reinheckel, T., Wiswedel, I., Augustin, W., Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation, involvement of oxidative protein modification (1997) Biochem J, 328, pp. 205-210 Zoratti, M., Szabo, I., The mitochondrial permeability transition (1995) Biochim Biophys Acta, 1241, pp. 139-176 Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett, 495, pp. 12-15 Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Herman, B., The mitochondrial permeability transition in cell death, a common mechanism in necrosis, apoptosis and autophagy (1998) Biochim Biophys Acta, 1366, pp. 177-196 Crompton, M., The mitochondrial permeability transition pore and its role in cell death (1999) Biochem J, 341, pp. 233-249 Green, D.R., Reed, J.C., Mitochondria and apoptosis (1998) Science, 281, pp. 1309-1312 He, L., Lemasters, J.J., Regulated and unregulated mitochondrial permeability transition pores, a new paradigm of pore structure and function? (2002) FEBS Lett, 512, pp. 1-7 Beutner, G., Ruck, A., Riede, B., Brdiczka, D., Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases (1998) Biochim Biophys Acta, 1368, pp. 7-18 Brdiczka, D., Beutner, G., Ruck, A., Dolder, M., Wallimann, T., The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition (1998) Biofactors, 8, pp. 235-242 Halestrap, A.P., McStay, G.P., Clarke, S.J., The permeability transition pore complex, another view (2002) Biochimie, 84, pp. 153-166 Fagian, M.M., Pereira-da-Silva, L., Martins, I.S., Vercesi, A.E., Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants (1990) J Biol Chem, 265, pp. 19955-19960 Siliprandi, D., Scutari, G., Zoccarato, F., Siliprandi, N., Action of 'diamide' on some energy linked processes of rat liver mitochondria (1974) FEBS Lett, 42, pp. 197-199 Lenartowicz, E., Bernardi, P., Azzone, G.F., Phenylarsine oxide induces the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria (1991) J Bioenerg Biomembr, 23, pp. 679-688 Valle, V.G., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants (1993) Arch Biochem Biophys, 307, pp. 1-7 Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J., Vercesi, A.E., Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria (1995) Free Radic Biol Med, 18, pp. 479-486 Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J., Vercesi, A.E., Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation (1996) J Biol Chem, 271, pp. 2929-2934 Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species (1996) FEBS Lett, 378, pp. 150-152 Frei, B., Winterhalter, K.H., Richter, C., Mechanism of alloxan-induced calcium release from rat liver mitochondria (1985) J Biol Chem, 260, pp. 7394-7401 Hermes-Lima, M., Valle, V.G., Vercesi, A.E., Bechara, E.J., Damage to rat liver mitochondria promoted by delta-aminolevulinic acid-generated reactive oxygen species, connections with acute intermittent porphyria and lead-poisoning (1991) Biochim Biophys Acta, 1056, pp. 57-63 Packer, M.A., Murphy, M.P., Peroxynitrite formed by simultaneous nitric oxide and superoxide generation causes cyclosporin-A-sensitive mitochondrial calcium efflux and depolarisation (1995) Eur J Biochem, 234, pp. 231-239 Vercesi, A.E., Kowaltowski, A.J., Grijalba, M.T., Meinicke, A.R., Castilho, R.F., The role of reactive oxygen species in mitochondrial permeability transition (1997) Biosci Rep, 17, pp. 43-52 Grijalba, M.T., Vercesi, A.E., Schreier, S., Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca 2+-stimulated generation of reactive oxygen species by the respiratory chain (1999) Biochemistry, 38, pp. 13279-13287 Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabo, I., Zoratti, M., Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations (1992) J Biol Chem, 267, pp. 2934-2939 Kowaltowski, A.J., Vercesi, A.E., Castilho, R.F., Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+, correlation with mitochondrial permeability transition (1997) Biochim Biophys Acta, 1318, pp. 395-402 Kowaltowski, A.J., Castilho, R.F., Ca2+ acting at the external side of the inner mitochondrial membrane can stimulate mitochondrial permeability transition induced by phenylarsine oxide (1997) Biochim Biophys Acta, 1322, pp. 221-229 Kroemer, G., Dallaporta, B., Resche-Rigon, M., The mitochondrial death/life regulator in apoptosis and necrosis (1998) Annu Rev Physiol, 60, pp. 619-642 Fiers, W., Beyaert, R., Declercq, W., Vandenabeele, P., More than one way to die, apoptosis, necrosis and reactive oxygen damage (1999) Oncogene, 18, pp. 7719-7730 Liu, X., Kim, C.N., Yang, J., Jemmerson, R., Wang, X., Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c (1996) Cell, 86, pp. 147-157 Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Kroemer, G., Molecular characterization of mitochondrial apoptosis-inducing factor (1999) Nature, 397, pp. 441-446 Zhivotovsky, B., Samali, A., Gahm, A., Orrenius, S., Caspases: Their intracellular localization and translocation during apoptosis (1999) Cell Death Differ, 6, pp. 644-651 Wajant, H., The Fas signaling pathway, more than a paradigm (2002) Science, 296, pp. 1635-1636 Kelekar, A., Thompson, C.B., Bcl-2-family proteins, the role of the BH3 domain in apoptosis (1998) Trends Cell Biol, 8, pp. 324-330 Reed, J.C., Bcl-2 family proteins (1998) Oncogene, 17, pp. 3225-3236 Cory, S., Huang, D.C., Adams, J.M., The Bcl-2 family, roles in cell survival and oncogenesis (2003) Oncogene, 22, pp. 8590-8607 Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., Nicotera, P., Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis (1997) J Exp Med, 185, pp. 1481-1486 Halestrap, A.P., Clarke, S.J., Javadov, S.A., Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection (2004) Cardiovasc Res, 61, pp. 372-385 Cuzzocrea, S., Riley, D.P., Caputi, A.P., Salvemini, D., Antioxidant therapy, a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury (2001) Pharmacol Rev, 53, pp. 135-159 Murry, C.E., Jennings, R.B., Reimer, K.A., Preconditioning with ischemia, a delay of lethal cell injury in ischemic myocardium (1986) Circulation, 74, pp. 1124-1136 Vanden Hoek, T.L., Becker, L.B., Shao, Z., Li, C., Schumacker, P.T., Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes (1998) J Biol Chem, 273, pp. 18092-18098 Xu, M., Wang, Y., Hirai, K., Ayub, A., Ashraf, M., Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis (2001) Am J Physiol Heart Circ Physiol, 280, pp. H899-H908 Lawson, C.S., Downey, J.M., Preconditioning, state of the art myocardial protection (1993) Cardiovasc Res, 27, pp. 542-550 Parratt, J.R., Protection of the heart by ischaemic preconditioning, mechanisms and possibilities for pharmacological exploitation (1994) Trends Pharmacol Sci, 15, pp. 19-25 Facundo, H.T., Fornazari, M., Kowaltowski, A.J., Tissue protection mediated by mitochondrial K+ channels (2006) Biochim Biophys Acta, 1762, pp. 202-212 Murata, M., Akao, M., O'Rourke, B., Marban, E., Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion, possible mechanism of cardioprotection (2001) Circ Res, 89, pp. 891-898 Hausenloy, D.J., Maddock, H.L., Baxter, G.F., Yellon, D.M., Inhibiting mitochondrial permeability transition pore opening, a new paradigm for myocardial preconditioning? (2002) Cardiovasc Res, 55, pp. 534-543 Javadov, S.A., Clarke, S., Das, M., Griffiths, E.J., Lim, K.H., Halestrap, A.P., Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart (2003) J Physiol, 549, pp. 513-524 Facundo, H.T., De Paula, J.G., Kowaltowski, A.J., Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death (2005) J Bioenerg Biomembr, 37, pp. 75-82 Garlid, K.D., Dos Santos, P., Xie, Z.J., Costa, A.D., Paucek, P., Mitochondrial potassium transport, the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection (2003) Biochim Biophys Acta, 1606, pp. 1-21 Belisle, E., Kowaltowski, A.J., Opening of mitochondrial K+ channels increases ischemic ATP levels by preventing hydrolysis (2002) J Bioenerg Biomembr, 34, pp. 285-298 Ferranti, R., Da Silva, M.M., Kowaltowski, A.J., Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation (2003) FEBS Lett, 536, pp. 51-55 Carroll, R., Gant, V.A., Yellon, D.M., Mitochondrial KATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation (2001) Cardiovasc Res, 51, pp. 691-700 Forbes, R.A., Steenbergen, C., Murphy, E., Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism (2001) Circ Res, 88, pp. 802-809 Facundo, H.T., Carreira, R.S., De Paula, J.G., Santos, C.X., Ferranti, R., Laurindo, F.R., Kowaltowski, A.J., Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity (2006) Free Radic Biol Med, 40, pp. 469-479 Beal, M.F., Hyman, B.T., Koroshetz, W., Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? (1993) Trends Neurosci, 16, pp. 125-131 Coyle, J.T., Puttfarcken, P., Oxidative stress, glutamate, and neurodegenerative disorders (1993) Science, 262, pp. 689-695 Orth, M., Schapira, A.H., Mitochondria and degenerative disorders (2001) Am J Med Genet, 106, pp. 27-36 Schon, E.A., Manfredi, G., Neuronal degeneration and mitochondrial dysfunction (2003) J Clin Invest, 111, pp. 303-312 Rothman, S.M., Olney, J.W., Excitotoxicity and the NMDA receptor (1987) Trends Neurosci, 10, pp. 299-302 Fiskum, G., Murphy, A.N., Beal, M.F., Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases (1999) J Cereb Blood Flow Metab, 19, pp. 351-369 Choi, D.W., Ionic dependence of glutamate neurotoxicity (1987) J Neurosci, 7, pp. 369-379 Nicholls, D.G., Budd, S.L., Mitochondria and neuronal survival (2000) Physiol Rev, 80, pp. 315-360 Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A.P., Wieloch, T., Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death (1998) J Neurosci, 18, pp. 5151-5159 Matsumoto, S., Friberg, H., Ferrand-Drake, M., Wieloch, T., Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion (1999) J Cereb Blood Flow Metab, 19, pp. 736-741 Castilho, R.F., Hansson, O., Ward, M.W., Budd, S.L., Nicholls, D.G., Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells (1998) J Neurosci, 18, pp. 10277-10286 Brustovetsky, N., Dubinsky, J.M., Limitations of cyclosporin a inhibition of the permeability transition in CNS mitochondria (2000) J Neurosci, 20, pp. 8229-8237 Alano, C.C., Beutner, G., Dirksen, R.T., Gross, R.A., Sheu, S.S., Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation (2002) J Neurochem, 80, pp. 531-538 Maciel, E.N., Kaminski Schierle, G.S., Hansson, O., Brundin, P., Castilho, R.F., Cyclosporin a and Bcl-2 do not inhibit quinolinic acid-induced striatal excitotoxicity in rodents (2003) Exp Neurol, 183, pp. 430-437 Nicholls, D.G., Scott, I.D., The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms (1980) Biochem J, 186, pp. 833-839 Maciel, E.N., Kowaltowski, A.J., Schwalm, F.D., Rodrigues, J.M., Souza, D.O., Vercesi, A.E., Wajner, M., Castilho, R.F., Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition (2004) J Neurochem, 90, pp. 1025-1035 Lipton, P., Ischemic cell death in brain neurons (1999) Physiol Rev, 79, pp. 1431-1568 Friberg, H., Wieloch, T., Castilho, R.F., Mitochondrial oxidative stress after global brain ischemia in rats (2002) Neurosci Lett, 334, pp. 111-114 Mattiasson, G., Shamloo, M., Gido, G., Mathi, K., Tomasevic, G., Yi, S., Warden, C.H., Wieloch, T., Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma (2003) Nat Med, 9, pp. 1062-1068 Langston, J.W., Ballard, P., Tetrud, J.W., Irwin, I., Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis (1983) Science, 219, pp. 979-980 Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., Greenamyre, J.T., Chronic systemic pesticide exposure reproduces features of Parkinson's disease (2000) Nat Neurosci, 3, pp. 1301-1306 Votyakova, T.V., Reynolds, I.J., Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I (2005) J Neurochem, 93, pp. 526-537 Sousa, S.C., Maciel, E.N., Vercesi, A.E., Castilho, R.F., Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone (2003) FEBS Lett, 543, pp. 179-183 Sousa, S.C., Castilho, R.F., Protective effect of melatonin on rotenone plus Ca2+-induced mitochondrial oxidative stress and PC12 cell death (2005) Antioxid Redox Signal, 7, pp. 1110-1116 Dutra, J.C., Dutra-Filho, C.S., Cardozo, S.E., Wannmacher, C.M., Sarkis, J.J., Wajner, M., Inhibition of succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase activities by methylmalonate in brain and liver of developing rats (1993) J Inherit Metab Dis, 16, pp. 147-153 Okun, J.G., Horster, F., Farkas, L.M., Feyh, P., Hinz, A., Sauer, S., Hoffmann, G.F., Kolker, S., Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity (2002) J Biol Chem, 277, pp. 14674-14680 Fenton, W.A., Gravel, R.A., Rosenblatt, D.S., Disorders of propionate and methylmalonate metabolism (2001) The Metabolic and Molecular Basis of Inherited Disease, 94, pp. 2165-2193. , (C.R. Scriver, A.L. Beaudet, A.D. Valle, W.S. Sly, eds). 8th edition, McGraw-Hill, New York Libby, P., The forgotten majority: Unfinished business in cardiovascular risk reduction (2005) J Am Coll Cardiol, 46, pp. 1225-1228 Gong, D.W., He, Y., Karas, M., Reitman, M., Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin (1997) J Biol Chem, 272, pp. 24129-24132 Samec, S., Seydoux, J., Dulloo, A.G., Post-starvation gene expression of skeletal muscle uncoupling protein 2 and uncoupling protein 3 in response to dietary fat levels and fatty acid composition, a link with insulin resistance (1999) Diabetes, 48, pp. 436-441 Nisoli, E., Carruba, M.O., Tonello, C., Macor, C., Federspil, G., Vettor, R., Induction of fatty acid translocase/CD36, peroxisome proliferator- activated receptor-gamma2, leptin, uncoupling proteins 2 and 3, and tumor necrosis factor-alpha gene expression in human subcutaneous fat by lipid infusion (2000) Diabetes, 49, pp. 319-324 Jezek, P., Garlid, K.D., Mammalian mitochondrial uncoupling proteins (1998) Int J Biochem Cell Biol, 30, pp. 1163-1168 Brand, M.D., Esteves, T.C., Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3 (2005) Cell Metab, 2, pp. 85-93 Negre-Salvayre, A., Hirtz, C., Carrera, G., Cazenave, R., Troly, M., Salvayre, R., Penicaud, L., Casteilla, L., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation (1997) FASEB J, 11, pp. 809-815 Bao, S., Kennedy, A., Wojciechowski, B., Wallace, P., Ganaway, E., Garvey, W.T., Expression of mRNAs encoding uncoupling proteins in human skeletal muscle: Effects of obesity and diabetes (1998) Diabetes, 47, pp. 1935-1940 Boss, O., Bobbioni-Harsch, E., Assimacopoulos-Jeannet, F., Muzzin, P., Munger, R., Giacobino, J.P., Golay, A., Uncoupling protein-3 expression in skeletal muscle and free fatty acids in obesity (1998) Lancet, 351, p. 351 Hidaka, S., Yoshimatsu, H., Kakuma, T., Sakino, H., Kondou, S., Hanada, R., Oka, K., Sakata, T., Tissue-specific expression of the uncoupling protein family in streptozotocin-induced diabetic rats (2000) Proc Soc Exp Biol Med, 224, pp. 172-177 Alberici, L.C., Oliveira, H.C.F., Bighetti, E.J.B., De Faria, E.C., Degaspari, G.R., Souza, C.T., Vercesi, A.E., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2003) J Bioenerg Biomembr, 35, pp. 451-457 Oliveira, H.C., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Velho, J.A., Vercesi, A.E., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J, 19, pp. 278-280 Ito, Y., Azrolan, N., O'Connell, A., Walsh, A., Breslow, J.L., Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice (1990) Science, 249, pp. 790-793 Reaven, G.M., Mondon, C.E., Chen, Y.D., Breslow, J.L., Hypertriglyceridemic mice transgenic for human apolipoprotein CIII gene are neither insulin resistant nor hyperinsulinemic (1994) J Lipid Res, 35, pp. 820-824 Amaral, M.E.C., Oliveira, H.C.F., Carneiro, E.M., Delghingaro-Augusto, V., Vieira, E., Berti, J.A., Boschero, A.C., Plasma glucose regulation and insulin secretion in hypertriglyceridemic mice (2002) Horm Metab Res, 34, pp. 21-26 Chisolm, G.M., Steinberg, D., The oxidative hypothesis of atherogenesis: An overview (2000) Free Radic Biol Med, 28, pp. 1815-1826 Velho, J.A., Okanobo, H., Degasperi, G.R., Matsumoto, M.Y., Alberici, L.C., Cosso, R.G., Oliveira, H.C., Vercesi, A.E., Statins induce calcium-dependent mitochondrial permeability transition (2006) Toxicology, 219, pp. 124-132 Kaneta, S., Satoh, K., Kano, S., Kanda, M., Ichihara, K., All hydrophobic HMG-CoA reductase inhibitors induce apoptotic death in rat pulmonary vein endothelial cells (2003) Atherosclerosis, 170, pp. 237-243 Kubota, T., Fujisaki, K., Itoh, Y., Yano, T., Sendo, T., Oishi, R., Apoptotic injury in cultured human hepatocytes induced by HMG-CoA reductase inhibitors (2004) Biochem Pharmacol, 67, pp. 2175-2186 Clark, L.T., Treating dyslipidemia with statins: The risk-benefit profile (2003) Am Heart J, 145, pp. 387-396