Artículos de revistas
Development Of A Voltammetric Sensor For Catechol In Nanomolar Levels Using A Modified Electrode With Cu(phen)2(tcnq)2 And Pll
Registro en:
Sensors And Actuators, B: Chemical. , v. 117, n. 1, p. 274 - 281, 2006.
9254005
10.1016/j.snb.2005.11.042
2-s2.0-33745699651
Autor
de Cassia Silva Luz R.
Damos F.S.
de Oliveira A.B.
Beck J.
Kubota L.T.
Institución
Resumen
A sensor based on glassy carbon (GC) electrode modified with bis(1,10-phenantroline)copper(II) bis(tetracyanoquinodimethanide) [Cu(phen)2(TCNQ)2] immobilized in a poly-l-lysine (PLL) film is proposed for catechol (CA) determination with differential pulse voltammetry (DPV) technique. The modified electrode showed excellent stability as well as the ability to detect catechol in nanomolar catechol levels. A linear response range from 10 nmol l-1 up to 20 μmol l-1 with a sensitivity of 2.29 μA l μmol-1 cm-2 and detection limit of 3.0 nmol l-1 were observed in the optimized conditions. The repeatability of the mesurements with the proposed sensor was 2% evaluated in term of relative standard deviation, with n = 10 for 10 μmol l-1 CA. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the catechol oxidation reaction involves two-electrons and a heterogenous rate constant (k) average value of about 1.30 × 103 M-1 s-1. The catechol diffusion coefficient (Do) value was estimated as being 7.6 × 10-6 cm2 s-1. The sensor was successfully applied for CA determination in powdered guarana samples. © 2005 Elsevier B.V. All rights reserved. 117 1 274 281 Solná, R., Sapelnikova, S., Skládal, P., Winther-Nielsen, M., Carlsson, C., Emnéus, J., Ruzgas, T., Multienzyme electrochemical array sensor for determination of phenols and pesticides (2005) Talanta, 65, pp. 349-357 Lin, X., Gong, J., Electrocatalytic oxidation and selective detection of dopamine at a 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide self-assembled bilayer membrane modified glassy carbon electrode (2004) Anal. Chim. Acta, 507, pp. 259-265 Yoshitake, T., Kehr, J., Yoshitake, S., Fujino, K., Nohta, H., Yamaguchi, M., Determination of serotonin, noradrenaline, dopamine and their metabolites in rat brain extracts and microdialysis samples by column liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine (2004) J. Chromatogr. B, 807, pp. 177-183 Powley, M.W., Carloson, G.P., Species comparison of hepatic and pulmonary metabolism of benzene (1999) Toxicology, 139, pp. 207-217 Talcott, S.T., Passeretti, S., Duncan, C.E., Gorbet, D.W., Polyphenolic content and sensory properties of normal and high oleic acid peanuts (2005) Food Chem., 90, pp. 379-388 Cui, H., He, C., Zhao, G., Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection (1999) J. Chromatogr. A, 855, pp. 171-179 Maurer, H.H., Bickeboeller-Friedrich, J., Kraemer, T., Gas chromatographic-mass spectrometric procedures for determination of the catechol-O-methyltransferase (COMT) activity and for detection of unstable catecholic metabolites in human and rat liver preparations after (COMT) catalyzed in statu nascendi derivatization using S-adenosylmethionine (2000) J. Chromatogr. B, 739, pp. 325-335 Fiehn, O., Jekel, M., Analysis of phenolic compounds in industrial wastewater with high-performance liquid chromatography and post-column reaction detection (1997) J. Chromatogr. A, 769, pp. 189-200 Sotomayor, M.D.P.T., Tanaka, A.A., Kubota, L.T., Tris (2,2′-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction (2003) Electrochim. Acta, 48, pp. 855-865 Carvalho, R.M., Mello, C., Kubota, L.T., Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool (2000) Anal. Chim. Acta, 420, pp. 109-121 Mello, L.D., Stomayor, M.D.P.T., Kubota, L.T., HRP-based amperometric biosensor for the polyphenols determination in vegetables extract (2003) Sens. Actuators B: Chem., 96, pp. 636-645 Murray, R.W., (1984) Electroanalytical Chemistry, , Bard A.J. (Ed), Marcel Dekker, New York Redepenning, J.G., Chemically modified electrodes-a general overview (1987) Tracs-Trends Anal. Chem., 6, pp. 18-22 Razmi, H., Agazadeh, M., Habibi-A, B., Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthesized by electroless procedure (2003) J. Electroanal. Chem., 547, pp. 25-33 Damos, F.S., Sotomayor, M.D.T., Kubota, L.T., Tanaka, S.M.C.N., Tanaka, A.A., Iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin as a biomimetic catalyst of horseradish peroxidase on the electrode surface: an amperometric sensor for phenolic compound determinations (2003) Analyst, 128, pp. 225-259 Dempsey, E., Diamond, D., Collier, A., Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film (2004) Biosens. Bioelectron., 20, pp. 367-377 Rajesh, W., Kaneto, K., Amperometric tyrosinase based biosensor using an electropolymerized PTS-doped polypyrrole film as an entrapment support (2004) React. Funct. Polym., 59, pp. 163-169 Campuzano, S., Serra, B., Pedrero, M., Villena, F.J.M., Pingarrón, J.M., Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors (2003) Anal. Chim. Acta, 494, pp. 187-197 Cosnier, S., Szunerits, S., Markks, R.S., Lellouche, J.P., Perie, K., Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes (2001) J. Biochem. Biophys. Methods, 50, pp. 65-77 Dantoni, P., Serrano, S.H.P., Brett, A.M.O., Gutz, J.G.R., Flow-injection determination of catechol with a new tyrosinase/DNA biosensor (1998) Anal. Chim. Acta, 366, pp. 137-145 Haghighi, B., Gordon, L., Ruzgas, T., Josson, L.J., Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis (2003) Anal. Chim. Acta, 487, pp. 3-14 Izacumen, N., Bouchta, D., Zejli, H., Kaoutit, M.E., Stalcup, A.M., Temsamani, K.R., Electrosynthesis and analytical performances of functionalized poly (pyrrole/β-cyclodextrin) films (2005) Talanta, 66, pp. 111-117 Sotomayor, M.D.P.T., Tanaka, A.A., Kubota, L.T., Development of an enzymeless biosensor for the determination of phenolic compounds (2002) Anal. Chim. Acta, 455, pp. 215-223 Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode (2004) Talanta, 64, pp. 935-942 Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine (PLL) for dopamine determination (2005) Electrochim. Acta, 50, pp. 2675-2683 Khoo, S.B., John, K.F., Stanley Pons, Electrolyte effects on the cyclic voltammetry of TCNQ and TCNE (1986) J. Electroanal. Chem., 215, pp. 273-285 Zhao, S., Lennox, R., Bioelectrocatalysis at organic conducting salt electrodes. Use of hexamethylenetetratellurafulvalene tetracyanoquinodimethane (HMTTeF-TCNQ) as a versatile electrode material (1993) J. Electroanal. Chem., 346, pp. 161-173 Melby, L.R., Harder, R.J., Hertler, W.R., Mahler, W., Benson, R.E., Mochel, W.E., Substituted quinodimethans. 2. Anion-radical derivatives and complexes of 7,7,8,8-tetracyanoquinodimethane (1962) J. Am. Chem. Soc., 84, pp. 3374-3387 Schwartz, M., Hatfield, W.E., Spectroscopic and magnetic studies of 2 electrically conducting charge-transfer compounds of 7,7,8,8-tetracyanoquinodimethanide with cationic copper-chelates (1987) Inorg. Chem., 26, pp. 2823-2825 Zhu, Z., Na-Qiang, L., 9,10-Anthraquinone modified glassy carbon electrode and its application for hemoglobin determination (1998) Electroanalysis, 10, pp. 643-646 Magna, A., Salomão, A.A., Vila, M.M.D.C., Tubino, M., Comparative study of two spectrophotometric reagents for catechol analysis in guaraná seeds powder (2003) J. Braz. Chem. Soc., 14, p. 129 Pandey, P.C., Upadhyay, S., Pathak, H.C., Pandey, C.M.D., Sensitivity, selectivity and reproducibility of some mediated electrochemical biosensors/sensors (1998) Anal. Lett., 31, pp. 2327-2348 Andrieux, C.P., Savéant, J.M., Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions (1978) J. Electroanal. Chem., 93, pp. 163-168 Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods, Fundamentals and Applications, , Wiley, New York Durgbanshi, A., Kok, W.T., Capillary electrophoresis and electrochemical detection with a conventional detector cell (1998) J. Chromatogr. A, 798, pp. 289-296 Razmi, H., Agazadeh, M., Habibi-A, B., Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthetized by electroless procedure (2003) J. Electroanal. Chem., 547, pp. 25-33 Razmi, H., Azadbakkht, A., Electrochemical characteristic of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode (2005) Electrochim. Acta, 50, pp. 2193-2201 Laviron, E., Electrochemical reactions with protonations at equilibrium: part II. The 1e, 1 H+ reaction (four-member square scheme) for a heterogeneous reaction (1981) J. Electroanal. Chem., 124, pp. 1-7 Richard, J.A., Whitson, P.E., Evans, D.H., Electrochemical oxidation of 2,4,6-tri-tert-butylphenol (1975) J. Electroanal. Chem., 63, pp. 311-327 Papouchado, L., Sandford, R.W., Petrie, G., Adams, R.N., Anodic oxidation pathways of phenolic compounds part 2. Stepwise electron transfers and coupled hydroxylations (1975) J. Electroanal. Chem., 65, pp. 275-284 Kim, M.A., Lee, W.Y., Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film (2003) Anal. Chim. Acta, 479, pp. 143-150 Analytical Methods Commitee, Recommendations for the definition, estimationand use of the detection limit (1987) Analyst, 112, pp. 199-204 Henman, A.R., Guarana (paullinia-cupana var sorbilis)-ecological and social perspectives on an economic plant of the central amazon basin (1982) J. Pharm. Pharmacol., 6, pp. 311-338