dc.creatorde Cassia Silva Luz R.
dc.creatorDamos F.S.
dc.creatorde Oliveira A.B.
dc.creatorBeck J.
dc.creatorKubota L.T.
dc.date2006
dc.date2015-06-30T18:14:01Z
dc.date2015-11-26T14:27:59Z
dc.date2015-06-30T18:14:01Z
dc.date2015-11-26T14:27:59Z
dc.date.accessioned2018-03-28T21:31:09Z
dc.date.available2018-03-28T21:31:09Z
dc.identifier
dc.identifierSensors And Actuators, B: Chemical. , v. 117, n. 1, p. 274 - 281, 2006.
dc.identifier9254005
dc.identifier10.1016/j.snb.2005.11.042
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33745699651&partnerID=40&md5=d90927987452ef0c617aa2a78c8171b4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103610
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103610
dc.identifier2-s2.0-33745699651
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246480
dc.descriptionA sensor based on glassy carbon (GC) electrode modified with bis(1,10-phenantroline)copper(II) bis(tetracyanoquinodimethanide) [Cu(phen)2(TCNQ)2] immobilized in a poly-l-lysine (PLL) film is proposed for catechol (CA) determination with differential pulse voltammetry (DPV) technique. The modified electrode showed excellent stability as well as the ability to detect catechol in nanomolar catechol levels. A linear response range from 10 nmol l-1 up to 20 μmol l-1 with a sensitivity of 2.29 μA l μmol-1 cm-2 and detection limit of 3.0 nmol l-1 were observed in the optimized conditions. The repeatability of the mesurements with the proposed sensor was 2% evaluated in term of relative standard deviation, with n = 10 for 10 μmol l-1 CA. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the catechol oxidation reaction involves two-electrons and a heterogenous rate constant (k) average value of about 1.30 × 103 M-1 s-1. The catechol diffusion coefficient (Do) value was estimated as being 7.6 × 10-6 cm2 s-1. The sensor was successfully applied for CA determination in powdered guarana samples. © 2005 Elsevier B.V. All rights reserved.
dc.description117
dc.description1
dc.description274
dc.description281
dc.descriptionSolná, R., Sapelnikova, S., Skládal, P., Winther-Nielsen, M., Carlsson, C., Emnéus, J., Ruzgas, T., Multienzyme electrochemical array sensor for determination of phenols and pesticides (2005) Talanta, 65, pp. 349-357
dc.descriptionLin, X., Gong, J., Electrocatalytic oxidation and selective detection of dopamine at a 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide self-assembled bilayer membrane modified glassy carbon electrode (2004) Anal. Chim. Acta, 507, pp. 259-265
dc.descriptionYoshitake, T., Kehr, J., Yoshitake, S., Fujino, K., Nohta, H., Yamaguchi, M., Determination of serotonin, noradrenaline, dopamine and their metabolites in rat brain extracts and microdialysis samples by column liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine (2004) J. Chromatogr. B, 807, pp. 177-183
dc.descriptionPowley, M.W., Carloson, G.P., Species comparison of hepatic and pulmonary metabolism of benzene (1999) Toxicology, 139, pp. 207-217
dc.descriptionTalcott, S.T., Passeretti, S., Duncan, C.E., Gorbet, D.W., Polyphenolic content and sensory properties of normal and high oleic acid peanuts (2005) Food Chem., 90, pp. 379-388
dc.descriptionCui, H., He, C., Zhao, G., Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection (1999) J. Chromatogr. A, 855, pp. 171-179
dc.descriptionMaurer, H.H., Bickeboeller-Friedrich, J., Kraemer, T., Gas chromatographic-mass spectrometric procedures for determination of the catechol-O-methyltransferase (COMT) activity and for detection of unstable catecholic metabolites in human and rat liver preparations after (COMT) catalyzed in statu nascendi derivatization using S-adenosylmethionine (2000) J. Chromatogr. B, 739, pp. 325-335
dc.descriptionFiehn, O., Jekel, M., Analysis of phenolic compounds in industrial wastewater with high-performance liquid chromatography and post-column reaction detection (1997) J. Chromatogr. A, 769, pp. 189-200
dc.descriptionSotomayor, M.D.P.T., Tanaka, A.A., Kubota, L.T., Tris (2,2′-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction (2003) Electrochim. Acta, 48, pp. 855-865
dc.descriptionCarvalho, R.M., Mello, C., Kubota, L.T., Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool (2000) Anal. Chim. Acta, 420, pp. 109-121
dc.descriptionMello, L.D., Stomayor, M.D.P.T., Kubota, L.T., HRP-based amperometric biosensor for the polyphenols determination in vegetables extract (2003) Sens. Actuators B: Chem., 96, pp. 636-645
dc.descriptionMurray, R.W., (1984) Electroanalytical Chemistry, , Bard A.J. (Ed), Marcel Dekker, New York
dc.descriptionRedepenning, J.G., Chemically modified electrodes-a general overview (1987) Tracs-Trends Anal. Chem., 6, pp. 18-22
dc.descriptionRazmi, H., Agazadeh, M., Habibi-A, B., Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthesized by electroless procedure (2003) J. Electroanal. Chem., 547, pp. 25-33
dc.descriptionDamos, F.S., Sotomayor, M.D.T., Kubota, L.T., Tanaka, S.M.C.N., Tanaka, A.A., Iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin as a biomimetic catalyst of horseradish peroxidase on the electrode surface: an amperometric sensor for phenolic compound determinations (2003) Analyst, 128, pp. 225-259
dc.descriptionDempsey, E., Diamond, D., Collier, A., Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film (2004) Biosens. Bioelectron., 20, pp. 367-377
dc.descriptionRajesh, W., Kaneto, K., Amperometric tyrosinase based biosensor using an electropolymerized PTS-doped polypyrrole film as an entrapment support (2004) React. Funct. Polym., 59, pp. 163-169
dc.descriptionCampuzano, S., Serra, B., Pedrero, M., Villena, F.J.M., Pingarrón, J.M., Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors (2003) Anal. Chim. Acta, 494, pp. 187-197
dc.descriptionCosnier, S., Szunerits, S., Markks, R.S., Lellouche, J.P., Perie, K., Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes (2001) J. Biochem. Biophys. Methods, 50, pp. 65-77
dc.descriptionDantoni, P., Serrano, S.H.P., Brett, A.M.O., Gutz, J.G.R., Flow-injection determination of catechol with a new tyrosinase/DNA biosensor (1998) Anal. Chim. Acta, 366, pp. 137-145
dc.descriptionHaghighi, B., Gordon, L., Ruzgas, T., Josson, L.J., Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis (2003) Anal. Chim. Acta, 487, pp. 3-14
dc.descriptionIzacumen, N., Bouchta, D., Zejli, H., Kaoutit, M.E., Stalcup, A.M., Temsamani, K.R., Electrosynthesis and analytical performances of functionalized poly (pyrrole/β-cyclodextrin) films (2005) Talanta, 66, pp. 111-117
dc.descriptionSotomayor, M.D.P.T., Tanaka, A.A., Kubota, L.T., Development of an enzymeless biosensor for the determination of phenolic compounds (2002) Anal. Chim. Acta, 455, pp. 215-223
dc.descriptionLuz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode (2004) Talanta, 64, pp. 935-942
dc.descriptionLuz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine (PLL) for dopamine determination (2005) Electrochim. Acta, 50, pp. 2675-2683
dc.descriptionKhoo, S.B., John, K.F., Stanley Pons, Electrolyte effects on the cyclic voltammetry of TCNQ and TCNE (1986) J. Electroanal. Chem., 215, pp. 273-285
dc.descriptionZhao, S., Lennox, R., Bioelectrocatalysis at organic conducting salt electrodes. Use of hexamethylenetetratellurafulvalene tetracyanoquinodimethane (HMTTeF-TCNQ) as a versatile electrode material (1993) J. Electroanal. Chem., 346, pp. 161-173
dc.descriptionMelby, L.R., Harder, R.J., Hertler, W.R., Mahler, W., Benson, R.E., Mochel, W.E., Substituted quinodimethans. 2. Anion-radical derivatives and complexes of 7,7,8,8-tetracyanoquinodimethane (1962) J. Am. Chem. Soc., 84, pp. 3374-3387
dc.descriptionSchwartz, M., Hatfield, W.E., Spectroscopic and magnetic studies of 2 electrically conducting charge-transfer compounds of 7,7,8,8-tetracyanoquinodimethanide with cationic copper-chelates (1987) Inorg. Chem., 26, pp. 2823-2825
dc.descriptionZhu, Z., Na-Qiang, L., 9,10-Anthraquinone modified glassy carbon electrode and its application for hemoglobin determination (1998) Electroanalysis, 10, pp. 643-646
dc.descriptionMagna, A., Salomão, A.A., Vila, M.M.D.C., Tubino, M., Comparative study of two spectrophotometric reagents for catechol analysis in guaraná seeds powder (2003) J. Braz. Chem. Soc., 14, p. 129
dc.descriptionPandey, P.C., Upadhyay, S., Pathak, H.C., Pandey, C.M.D., Sensitivity, selectivity and reproducibility of some mediated electrochemical biosensors/sensors (1998) Anal. Lett., 31, pp. 2327-2348
dc.descriptionAndrieux, C.P., Savéant, J.M., Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions (1978) J. Electroanal. Chem., 93, pp. 163-168
dc.descriptionBard, A.J., Faulkner, L.R., (1980) Electrochemical Methods, Fundamentals and Applications, , Wiley, New York
dc.descriptionDurgbanshi, A., Kok, W.T., Capillary electrophoresis and electrochemical detection with a conventional detector cell (1998) J. Chromatogr. A, 798, pp. 289-296
dc.descriptionRazmi, H., Agazadeh, M., Habibi-A, B., Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthetized by electroless procedure (2003) J. Electroanal. Chem., 547, pp. 25-33
dc.descriptionRazmi, H., Azadbakkht, A., Electrochemical characteristic of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode (2005) Electrochim. Acta, 50, pp. 2193-2201
dc.descriptionLaviron, E., Electrochemical reactions with protonations at equilibrium: part II. The 1e, 1 H+ reaction (four-member square scheme) for a heterogeneous reaction (1981) J. Electroanal. Chem., 124, pp. 1-7
dc.descriptionRichard, J.A., Whitson, P.E., Evans, D.H., Electrochemical oxidation of 2,4,6-tri-tert-butylphenol (1975) J. Electroanal. Chem., 63, pp. 311-327
dc.descriptionPapouchado, L., Sandford, R.W., Petrie, G., Adams, R.N., Anodic oxidation pathways of phenolic compounds part 2. Stepwise electron transfers and coupled hydroxylations (1975) J. Electroanal. Chem., 65, pp. 275-284
dc.descriptionKim, M.A., Lee, W.Y., Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film (2003) Anal. Chim. Acta, 479, pp. 143-150
dc.descriptionAnalytical Methods Commitee, Recommendations for the definition, estimationand use of the detection limit (1987) Analyst, 112, pp. 199-204
dc.descriptionHenman, A.R., Guarana (paullinia-cupana var sorbilis)-ecological and social perspectives on an economic plant of the central amazon basin (1982) J. Pharm. Pharmacol., 6, pp. 311-338
dc.languageen
dc.publisher
dc.relationSensors and Actuators, B: Chemical
dc.rightsfechado
dc.sourceScopus
dc.titleDevelopment Of A Voltammetric Sensor For Catechol In Nanomolar Levels Using A Modified Electrode With Cu(phen)2(tcnq)2 And Pll
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución