Artículos de revistas
Ecotoxicity Of Tio 2 To Daphnia Similis Under Irradiation
Registro en:
Journal Of Hazardous Materials. , v. 211-212, n. , p. 436 - 442, 2012.
3043894
10.1016/j.jhazmat.2011.12.075
2-s2.0-84858285129
Autor
Marcone G.P.S.
Oliveira A.C.
Almeida G.
Umbuzeiro G.A.
Jardim W.F.
Institución
Resumen
Currently, there are a large number of products (sunscreen, pigments, cosmetics, plastics, toothpastes and photocatalysts) that use TiO 2 nanoparticles. Due to this large production, these nanoparticles can be released into the aquatic, terrestrial and aerial environments at relative high concentration. TiO 2 in natural water has the capacity to harm aquatic organisms such as the Daphnia (Cladocera) species, mainly because the photocatalytic properties of this semiconductor. However, very few toxicity tests of TiO 2 nanoparticles have been conducted under irradiation. The aim of this study was to evaluate anatase and rutile TiO 2 toxicity to Daphnia similis exploring their photocatalytic properties by incorporating UV A and visible radiation as a parameter in the assays. Anatase and rutile TiO 2 samples at the highest concentration tested (100mgL -1) were not toxic to D. similis, neither in the dark nor under visible light conditions. The anatase form and a mixture of anatase and rutile, when illuminated by a UV A black light with a peak emission wavelength of 360nm, presented photo-dependent EC50 values of 56.9-7.8mgL -1, which indicates a toxicity mechanism caused by ROS (reactive oxygen species) generation. © 2012 Elsevier B.V. 211-212
436 442 Farré, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D., Ecotoxicity and analysis of nanomaterials in the aquatic environment (2009) Anal. Bioanal. Chem., 393, pp. 81-95 Nowack, B., Bucheli, T.D., Occurrence, behavior and effects of nanoparticles in the environment (2007) Environ. Pollut., 150, pp. 5-22 (2011), http://www.nanotechproject.org/inventories/consumer/analysis_draft/, The Project on Emerging Nanotechnologies PEN, The first publicly available on-line inventory of nanotechnology-based consumer products. (accessed 29.05.11)Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., Hull, M., Manufacture and use of nanomaterials: current status in the UK and global trends (2006) Occup. Med., 56, pp. 300-306 Jardim, W.F., Moraes, S.G., Takiyama, M.M.K., Photocatalytic degradation of aromatic chlorinated compounds using TiO 2: toxicity of intermediates (1997) Water Res., 31, pp. 1728-1732 Gálvez, J.B., Rodríguez, S.M., Gasca, C.A.E., Bandala, E.R., Gelover, S., Leal, T., Purificación de aguas por fotocatálisis heterogénea: Estado del arte (2001) Eliminación de Contaminantes por Fotocatálisis Heterogénea, pp. 51-76. , La Plata, M.A. Blesa (Ed.) Gaya, U.I., Abdullah, A.H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems (2008) J. Photochem. Photobiol. C, 9, pp. 1-12 Rizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F., Belgiorno, V., Degradation of diclofenac by TiO 2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays (2009) Water Res., 43, pp. 979-988 Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J.J., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications (2008) Water Res., 42, pp. 4591-4602 Nemmar, A., Melghit, K., Ali, B.H., The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO 2 nanorods in rats (2008) Exp. Biol. Med., 233, pp. 610-619 Kang, J.L., Moon, C., Lee, H.S., Lee, W.H., Park, E.M., Kim, H.S., Castranova, V., Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress (2008) J. Toxicol. Environ. Health A, 71, pp. 478-485 Grassian, V.H., Adamcakova-Dodd, A., Pettibone, J.M., O'shaughnessy, P.T., Thorne, P.S., Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes (2007) Nanotoxicology, 1, pp. 211-226 Warheit, D.B., Webb, T.R., Reed, K.L., Pulmonary toxicity screening studies in male rats with TiO 2 particulates substantially encapsulated with progenically deposited amorphous silica (2006) Part. Fibre Toxicol., 3, pp. 1-9 Kahru, A., Dubourguier, H., From ecotoxicology to nanoecotoxicology (2010) Toxicology, 269, pp. 105-119 Peralta-Videa, J.R., Zhaoa, L., Lopez-Morenoc, M.L., Nanomaterials and the environment: a review for the biennium 2008-2010 (2011) J. Hazard. Mater., 186, pp. 1-15 Aschberger, K., Micheletti, C., Sokull-Klüttgen, B., Christensen, F.M., Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health-lessons learned from four case studies (2011) Environ. Int., 37, pp. 1143-1156 Rincón, A.G., Pulgarin, C., Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO 2 concentration (2003) Appl. Catal. B, 44, pp. 263-284 Chen, C., Lei, P., Ji, H., Ma, W., Zhao, J., Photocatalysis by titanium dioxide and polyoxometalate/TiO 2 cocatalysts. Intermediates and mechanistic study (2004) Environ. Sci. Technol., 38, pp. 329-337 Nowotny, J., Titanium dioxide-based semiconductors for solar-driven environmentally friendly applications: impact of point defects on performance (2008) Energy Environ. Sci., 1, pp. 565-572 Jiang, G., Shen, Z., Niu, J., Bao, Y., Chen, J., He, T., Toxicological assessment of TiO 2 nanoparticles by recombinant Escherichia coli bacteria (2011) J. Environ. Monit., 13, pp. 42-48 Cho, M., Chung, H., Choi, W., Yoon, J., Linear correlation between inactivation of E. coli and OH radical concentration in TiO 2 photocatalytic disinfection (2004) Water Res., 38, pp. 1069-1077 Zan, L., Fa, W., Peng, T.P., Gong, Z.K., Photocatalysis effect of nanometer TiO 2 and TiO 2-coated ceramic plate on hepatitis B virus (2007) J. Photochem. Photobiol. B: Biol., 86, pp. 165-169 Hajkova, P., Spatenka, P., Horsky, J., Horska, I., Kolouch, A., Photocatalytic effect of TiO 2 films on viruses and bacteria (2007) Plasma Process. Polym., 4, pp. S397-S401 Wei, C., Lin, W.Y., Zainal, Z., Williams, N.E., Zhu, K., Kruzic, A.P., Smith, R.L., Rajeshwar, K., Bactericidal activity of TiO 2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system (1994) Environ. Sci. Technol., 28, pp. 934-938 Wiench, K., Wohlleben, W., Hisgen, V., Radke, K., Salinas, E., Zok, S., Landsiedel, R., Acute and chronic effects of nano- and non-nano-scale TiO 2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna (2009) Chemosphere, 76, pp. 1356-1365 Hund-Rinke, K., Simon, M., Ecotoxic effect of photocatalytic active nanoparticles (TiO 2) on algae and daphnids (2006) Environ. Sci. Pollut. Res., 13, pp. 1-8 Heinlaan, M., Ivask, A., Blinov, I., Dubourguier, H.C., Kahru, A., Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus (2008) Chemosphere, 71, pp. 1308-1316 Crisan, M., Ana Braileanu, Raileanu, M., Crisan1, D., Teodorescu, V.S., Birjega, R., Marinescu, V.E., Pokol, G., TiO 2-based nanopowders obtained from different Ti-alkoxides (2007) J. Therm. Anal. Calorim., 88, pp. 171-176 (1996), International organization for standardization of water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). ISO 6341, Geneva, SwitzerlandLindgren, T., Mwabora, J.M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C.G., Lindquist, S.E., Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering (2003) J. Phys. Chem., 107, pp. 5709-5716 Wang, X., Meng, S., Zhang, X., Wang, H., Zhong, W., Du, Q., Multi-type carbon doping of TiO 2 photocatalyst (2007) Chem. Phys. Lett., 444, pp. 292-296 Kortǜ, G., (1969) Reflectance Spectroscopy, , Springer Verlag, Berlin Anderson, C., Bard, A.J., Improved photocatalytic activity and characterization of mixed TiO 2/SiO 2 and TiO 2/Al 2O 3 materials (1997) J. Phys. Chem. B, 101, pp. 2611-2616 Jung, S., Kim, J.H., Sintering characteristics of TiO 2 nanoparticles by microwave processing (2010) Korean J. Chem. Eng., 27, pp. 645-650 Ali, H.M., Abou-Mesalam, M.M., El-Shorbagy, M.M., Structure and optical properties of chemically synthesized titanium oxide deposited by evaporation technique (2010) J. Phys. Chem. Solids, 71, pp. 51-55 (2004), Associação Brasileira de Normas Técnicas (ABNT), Ecotoxicologia Aquática - Toxicidade aguda - Método de ensaio com Daphnia spp (Cladorera, Crustácea), ABNT NBR 12713Organization for Economic Co-operation and Development (OECD), Paris, Daphnia 5P. Acute immobilization test (2004) OECD Guideline for Testing of Chemicals, , No. 202 (adapted 13.04.2004) Kumar, K.N.P., Growth of rutile crystallites during the initial-stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites (1995) Scr. Metall. Mater., 32, pp. 873-877 Li, W., Ni, C., Lin, H., Huang, C.P., Shah, S.I., Size dependence of thermal stability of TiO 2 nanoparticles (2004) J. Appl. Phys., 96, pp. 6663-6668 Sasaki, T., Watanabe, M., Semiconductor nanosheet crystallites of quasi-TiO 2 and their optical properties (1997) J. Phys. Chem. B, 101, pp. 10159-10161 Carp, O., Huisman, C.L., Reller, A., Photoinduced reactivity of titanium dioxide (2004) Prog. Solid State Chem., 32, pp. 33-177 Tunc, I., Bruns, M., Gliemann, H., Grunze, M., Koelsch, P., Bandgap determination and charge separation in Ag@TiO 2 core shell nanoparticle films (2010) Surf. Interface Anal., 42, pp. 835-841 Bickley, R.I., Gonzales-Carreno, T., Lees, J.L., Palmisano, L., Tilley, R.J.D., A structural investigation of titanium dioxide photocatalysts (1991) J. Solid State Chem., 92, pp. 178-190 Zhang, Q., Gao, L., Guo, J., Effects of calcination on the photocatalytic properties of nanosized TiO 2 powders prepared by TiCl 4 hydrolysis (2000) Appl. Catal. B: Environ., 26, pp. 207-215 Ohno, T., Sarukawa, K., Tokieda, K., Matsumura, M., Morphology of a TiO 2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases (2001) J. Catal., 203, pp. 82-86 Federici, G., Shaw, B.J., Handy, R.D., Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects (2007) Aquat. Toxicol., 84, pp. 415-430 Warheit, D.B., Hoke, R.A., Finlay, C., Donne, E.M., Reed, K.L., Sayes, C.M., Development of a base set of toxicity tests using ultrafine TiO 2 particles as a component of nanoparticle risk management (2007) Toxicol. Lett., 171, pp. 99-110 Zhu, X., Chang, Y., Chen, Y., Toxicity and bioaccumulation of TiO 2 nanoparticle aggregates in Daphnia magna (2010) Chemosphere, 78, pp. 209-215 Reeves, J.F., Davies, S.J., Dodd, N.J.F., Jha, A.N., Hydroxyl radicals (OH) are associated with titanium dioxide (TiO 2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells (2008) Mutat. Res., 640, pp. 113-122 Lovern, S.B., Klaper, R., Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles (2006) Environ. Toxicol. Chem., 25, pp. 1132-1137 Bang, S.H., L1, T., Lee, S.K., Kim, P., Kim, J.S., Min, J., Toxicity assessment of titanium (IV) oxide nanoparticles using Daphnia magna (water flea) (2011) Environ. Health Toxicol., 26, pp. 1-6 Rincón, A.G., Pulgarín, C., Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO 2 concentration (2003) Appl. Catal. B, 44, pp. 263-284 Marugán, J., Grieken, R., Pablos, C., Sordo, C., Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms (2010) Water Res., 44, pp. 789-796 Strigul, N., Vaccari, L., Galdun, C., Wazne, M., Liu, X., Christodoulatos, C., Jasinkiewicz, K., Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri (2009) Desalination, 248, pp. 771-782 Kim, K.T., Klaine, S.J., Cho, J., Kim, S., Kim, S.D., Oxidative stress responses of Daphnia magna exposed to TiO 2 nanoparticles according to size fraction (2010) Sci. Total Environ., 408, pp. 2268-2272