dc.creatorMarcone G.P.S.
dc.creatorOliveira A.C.
dc.creatorAlmeida G.
dc.creatorUmbuzeiro G.A.
dc.creatorJardim W.F.
dc.date2012
dc.date2015-06-26T20:29:39Z
dc.date2015-11-26T14:26:14Z
dc.date2015-06-26T20:29:39Z
dc.date2015-11-26T14:26:14Z
dc.date.accessioned2018-03-28T21:29:14Z
dc.date.available2018-03-28T21:29:14Z
dc.identifier
dc.identifierJournal Of Hazardous Materials. , v. 211-212, n. , p. 436 - 442, 2012.
dc.identifier3043894
dc.identifier10.1016/j.jhazmat.2011.12.075
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84858285129&partnerID=40&md5=bb2045f300821595c261a4de175a9e2a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97112
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97112
dc.identifier2-s2.0-84858285129
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246027
dc.descriptionCurrently, there are a large number of products (sunscreen, pigments, cosmetics, plastics, toothpastes and photocatalysts) that use TiO 2 nanoparticles. Due to this large production, these nanoparticles can be released into the aquatic, terrestrial and aerial environments at relative high concentration. TiO 2 in natural water has the capacity to harm aquatic organisms such as the Daphnia (Cladocera) species, mainly because the photocatalytic properties of this semiconductor. However, very few toxicity tests of TiO 2 nanoparticles have been conducted under irradiation. The aim of this study was to evaluate anatase and rutile TiO 2 toxicity to Daphnia similis exploring their photocatalytic properties by incorporating UV A and visible radiation as a parameter in the assays. Anatase and rutile TiO 2 samples at the highest concentration tested (100mgL -1) were not toxic to D. similis, neither in the dark nor under visible light conditions. The anatase form and a mixture of anatase and rutile, when illuminated by a UV A black light with a peak emission wavelength of 360nm, presented photo-dependent EC50 values of 56.9-7.8mgL -1, which indicates a toxicity mechanism caused by ROS (reactive oxygen species) generation. © 2012 Elsevier B.V.
dc.description211-212
dc.description
dc.description436
dc.description442
dc.descriptionFarré, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D., Ecotoxicity and analysis of nanomaterials in the aquatic environment (2009) Anal. Bioanal. Chem., 393, pp. 81-95
dc.descriptionNowack, B., Bucheli, T.D., Occurrence, behavior and effects of nanoparticles in the environment (2007) Environ. Pollut., 150, pp. 5-22
dc.description(2011), http://www.nanotechproject.org/inventories/consumer/analysis_draft/, The Project on Emerging Nanotechnologies PEN, The first publicly available on-line inventory of nanotechnology-based consumer products. (accessed 29.05.11)Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., Hull, M., Manufacture and use of nanomaterials: current status in the UK and global trends (2006) Occup. Med., 56, pp. 300-306
dc.descriptionJardim, W.F., Moraes, S.G., Takiyama, M.M.K., Photocatalytic degradation of aromatic chlorinated compounds using TiO 2: toxicity of intermediates (1997) Water Res., 31, pp. 1728-1732
dc.descriptionGálvez, J.B., Rodríguez, S.M., Gasca, C.A.E., Bandala, E.R., Gelover, S., Leal, T., Purificación de aguas por fotocatálisis heterogénea: Estado del arte (2001) Eliminación de Contaminantes por Fotocatálisis Heterogénea, pp. 51-76. , La Plata, M.A. Blesa (Ed.)
dc.descriptionGaya, U.I., Abdullah, A.H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems (2008) J. Photochem. Photobiol. C, 9, pp. 1-12
dc.descriptionRizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F., Belgiorno, V., Degradation of diclofenac by TiO 2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays (2009) Water Res., 43, pp. 979-988
dc.descriptionLi, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J.J., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications (2008) Water Res., 42, pp. 4591-4602
dc.descriptionNemmar, A., Melghit, K., Ali, B.H., The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO 2 nanorods in rats (2008) Exp. Biol. Med., 233, pp. 610-619
dc.descriptionKang, J.L., Moon, C., Lee, H.S., Lee, W.H., Park, E.M., Kim, H.S., Castranova, V., Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress (2008) J. Toxicol. Environ. Health A, 71, pp. 478-485
dc.descriptionGrassian, V.H., Adamcakova-Dodd, A., Pettibone, J.M., O'shaughnessy, P.T., Thorne, P.S., Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes (2007) Nanotoxicology, 1, pp. 211-226
dc.descriptionWarheit, D.B., Webb, T.R., Reed, K.L., Pulmonary toxicity screening studies in male rats with TiO 2 particulates substantially encapsulated with progenically deposited amorphous silica (2006) Part. Fibre Toxicol., 3, pp. 1-9
dc.descriptionKahru, A., Dubourguier, H., From ecotoxicology to nanoecotoxicology (2010) Toxicology, 269, pp. 105-119
dc.descriptionPeralta-Videa, J.R., Zhaoa, L., Lopez-Morenoc, M.L., Nanomaterials and the environment: a review for the biennium 2008-2010 (2011) J. Hazard. Mater., 186, pp. 1-15
dc.descriptionAschberger, K., Micheletti, C., Sokull-Klüttgen, B., Christensen, F.M., Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health-lessons learned from four case studies (2011) Environ. Int., 37, pp. 1143-1156
dc.descriptionRincón, A.G., Pulgarin, C., Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO 2 concentration (2003) Appl. Catal. B, 44, pp. 263-284
dc.descriptionChen, C., Lei, P., Ji, H., Ma, W., Zhao, J., Photocatalysis by titanium dioxide and polyoxometalate/TiO 2 cocatalysts. Intermediates and mechanistic study (2004) Environ. Sci. Technol., 38, pp. 329-337
dc.descriptionNowotny, J., Titanium dioxide-based semiconductors for solar-driven environmentally friendly applications: impact of point defects on performance (2008) Energy Environ. Sci., 1, pp. 565-572
dc.descriptionJiang, G., Shen, Z., Niu, J., Bao, Y., Chen, J., He, T., Toxicological assessment of TiO 2 nanoparticles by recombinant Escherichia coli bacteria (2011) J. Environ. Monit., 13, pp. 42-48
dc.descriptionCho, M., Chung, H., Choi, W., Yoon, J., Linear correlation between inactivation of E. coli and OH radical concentration in TiO 2 photocatalytic disinfection (2004) Water Res., 38, pp. 1069-1077
dc.descriptionZan, L., Fa, W., Peng, T.P., Gong, Z.K., Photocatalysis effect of nanometer TiO 2 and TiO 2-coated ceramic plate on hepatitis B virus (2007) J. Photochem. Photobiol. B: Biol., 86, pp. 165-169
dc.descriptionHajkova, P., Spatenka, P., Horsky, J., Horska, I., Kolouch, A., Photocatalytic effect of TiO 2 films on viruses and bacteria (2007) Plasma Process. Polym., 4, pp. S397-S401
dc.descriptionWei, C., Lin, W.Y., Zainal, Z., Williams, N.E., Zhu, K., Kruzic, A.P., Smith, R.L., Rajeshwar, K., Bactericidal activity of TiO 2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system (1994) Environ. Sci. Technol., 28, pp. 934-938
dc.descriptionWiench, K., Wohlleben, W., Hisgen, V., Radke, K., Salinas, E., Zok, S., Landsiedel, R., Acute and chronic effects of nano- and non-nano-scale TiO 2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna (2009) Chemosphere, 76, pp. 1356-1365
dc.descriptionHund-Rinke, K., Simon, M., Ecotoxic effect of photocatalytic active nanoparticles (TiO 2) on algae and daphnids (2006) Environ. Sci. Pollut. Res., 13, pp. 1-8
dc.descriptionHeinlaan, M., Ivask, A., Blinov, I., Dubourguier, H.C., Kahru, A., Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus (2008) Chemosphere, 71, pp. 1308-1316
dc.descriptionCrisan, M., Ana Braileanu, Raileanu, M., Crisan1, D., Teodorescu, V.S., Birjega, R., Marinescu, V.E., Pokol, G., TiO 2-based nanopowders obtained from different Ti-alkoxides (2007) J. Therm. Anal. Calorim., 88, pp. 171-176
dc.description(1996), International organization for standardization of water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). ISO 6341, Geneva, SwitzerlandLindgren, T., Mwabora, J.M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C.G., Lindquist, S.E., Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering (2003) J. Phys. Chem., 107, pp. 5709-5716
dc.descriptionWang, X., Meng, S., Zhang, X., Wang, H., Zhong, W., Du, Q., Multi-type carbon doping of TiO 2 photocatalyst (2007) Chem. Phys. Lett., 444, pp. 292-296
dc.descriptionKortǜ, G., (1969) Reflectance Spectroscopy, , Springer Verlag, Berlin
dc.descriptionAnderson, C., Bard, A.J., Improved photocatalytic activity and characterization of mixed TiO 2/SiO 2 and TiO 2/Al 2O 3 materials (1997) J. Phys. Chem. B, 101, pp. 2611-2616
dc.descriptionJung, S., Kim, J.H., Sintering characteristics of TiO 2 nanoparticles by microwave processing (2010) Korean J. Chem. Eng., 27, pp. 645-650
dc.descriptionAli, H.M., Abou-Mesalam, M.M., El-Shorbagy, M.M., Structure and optical properties of chemically synthesized titanium oxide deposited by evaporation technique (2010) J. Phys. Chem. Solids, 71, pp. 51-55
dc.description(2004), Associação Brasileira de Normas Técnicas (ABNT), Ecotoxicologia Aquática - Toxicidade aguda - Método de ensaio com Daphnia spp (Cladorera, Crustácea), ABNT NBR 12713Organization for Economic Co-operation and Development (OECD), Paris, Daphnia 5P. Acute immobilization test (2004) OECD Guideline for Testing of Chemicals, , No. 202 (adapted 13.04.2004)
dc.descriptionKumar, K.N.P., Growth of rutile crystallites during the initial-stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites (1995) Scr. Metall. Mater., 32, pp. 873-877
dc.descriptionLi, W., Ni, C., Lin, H., Huang, C.P., Shah, S.I., Size dependence of thermal stability of TiO 2 nanoparticles (2004) J. Appl. Phys., 96, pp. 6663-6668
dc.descriptionSasaki, T., Watanabe, M., Semiconductor nanosheet crystallites of quasi-TiO 2 and their optical properties (1997) J. Phys. Chem. B, 101, pp. 10159-10161
dc.descriptionCarp, O., Huisman, C.L., Reller, A., Photoinduced reactivity of titanium dioxide (2004) Prog. Solid State Chem., 32, pp. 33-177
dc.descriptionTunc, I., Bruns, M., Gliemann, H., Grunze, M., Koelsch, P., Bandgap determination and charge separation in Ag@TiO 2 core shell nanoparticle films (2010) Surf. Interface Anal., 42, pp. 835-841
dc.descriptionBickley, R.I., Gonzales-Carreno, T., Lees, J.L., Palmisano, L., Tilley, R.J.D., A structural investigation of titanium dioxide photocatalysts (1991) J. Solid State Chem., 92, pp. 178-190
dc.descriptionZhang, Q., Gao, L., Guo, J., Effects of calcination on the photocatalytic properties of nanosized TiO 2 powders prepared by TiCl 4 hydrolysis (2000) Appl. Catal. B: Environ., 26, pp. 207-215
dc.descriptionOhno, T., Sarukawa, K., Tokieda, K., Matsumura, M., Morphology of a TiO 2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases (2001) J. Catal., 203, pp. 82-86
dc.descriptionFederici, G., Shaw, B.J., Handy, R.D., Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects (2007) Aquat. Toxicol., 84, pp. 415-430
dc.descriptionWarheit, D.B., Hoke, R.A., Finlay, C., Donne, E.M., Reed, K.L., Sayes, C.M., Development of a base set of toxicity tests using ultrafine TiO 2 particles as a component of nanoparticle risk management (2007) Toxicol. Lett., 171, pp. 99-110
dc.descriptionZhu, X., Chang, Y., Chen, Y., Toxicity and bioaccumulation of TiO 2 nanoparticle aggregates in Daphnia magna (2010) Chemosphere, 78, pp. 209-215
dc.descriptionReeves, J.F., Davies, S.J., Dodd, N.J.F., Jha, A.N., Hydroxyl radicals (OH) are associated with titanium dioxide (TiO 2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells (2008) Mutat. Res., 640, pp. 113-122
dc.descriptionLovern, S.B., Klaper, R., Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles (2006) Environ. Toxicol. Chem., 25, pp. 1132-1137
dc.descriptionBang, S.H., L1, T., Lee, S.K., Kim, P., Kim, J.S., Min, J., Toxicity assessment of titanium (IV) oxide nanoparticles using Daphnia magna (water flea) (2011) Environ. Health Toxicol., 26, pp. 1-6
dc.descriptionRincón, A.G., Pulgarín, C., Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO 2 concentration (2003) Appl. Catal. B, 44, pp. 263-284
dc.descriptionMarugán, J., Grieken, R., Pablos, C., Sordo, C., Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms (2010) Water Res., 44, pp. 789-796
dc.descriptionStrigul, N., Vaccari, L., Galdun, C., Wazne, M., Liu, X., Christodoulatos, C., Jasinkiewicz, K., Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri (2009) Desalination, 248, pp. 771-782
dc.descriptionKim, K.T., Klaine, S.J., Cho, J., Kim, S., Kim, S.D., Oxidative stress responses of Daphnia magna exposed to TiO 2 nanoparticles according to size fraction (2010) Sci. Total Environ., 408, pp. 2268-2272
dc.languageen
dc.publisher
dc.relationJournal of Hazardous Materials
dc.rightsfechado
dc.sourceScopus
dc.titleEcotoxicity Of Tio 2 To Daphnia Similis Under Irradiation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución