Artículos de revistas
Electrical Percolation, Morphological And Dispersion Properties Of Mwcnt/pmma Nanocomposites
Registro en:
Materials Research. Universidade Federal De Sao Carlos, v. 17, n. , p. 127 - 132, 2014.
15161439
10.1590/S1516-14392014005000059
2-s2.0-84908133797
Autor
Da Silva Leite Coelho P.H.
Marchesin M.S.
Morales A.R.
Bartoli J.R.
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Nanocomposites of poly (methyl methacrylate) (PMMA) and carbon nanotubes have a high potential for applications where conductivity and low specific weight are required. This piece of work concerns investigations of the level of dispersion and morphology on the electrical properties of in situ polymerized nanocomposites in different concentrations of multi-walled carbon nanotubes (MWCNT) in a PMMA matrix. The electrical conductivity was measured by the four point probe. The morphology and dispersion was analyzed by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). The correlation between electrical conductivity and the MWCNT amount, presented a typical percolation behavior, whose electrical percolation threshold determined by power law relationship was 0.2 vol. (%) The exponent t from the percolation power law indicated the formation of a 3D network of randomly arranged MWCNT. SAXS detected that the structures are intermediate to disks or spheres indicating fractal geometry for the MWCNT aggregates instead of isolated rods. HR-TEM images allowed us to observe the MWCNT individually dispersed into the matrix, revealing their distribution without preferential space orientation and absence of significant damage to the walls. The combined results of SAXS and HR-TEM suggest that MWCNT into the polymeric matrix might present interconnected aggregates and some dispersed single structures. 17
127 132 CNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Bauhofer, W., Kovacs, J.Z., A review and analysis of electrical percolation in carbon nanotube polymer composites (2009) Composites Science and Technology, 69 (10), pp. 1486-1498. , http://dx.doi.org/10.1016/j.compscitech.2008.06.018 Hori, M., Aoki, T., Ohira, Y., Yano, S., New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin (2001) Composites Part A: Applied Science and Manufacturing, 32 (2), pp. 287-290. , http://dx.doi.org/10.1016/S1359-835X(00)00141-X Marcq, F., Demont, P., Monfraix, P., Peigney, A., Laurent Ch., Falact, T., Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives (2011) Microelectronics Reliability, 51 (7), pp. 1230-1234. , http://dx.doi.org/10.1016/j.microrel.2011.03.020 Li, C., Liang, T., Lu, W., Tang, C., Hu, X., Cao, M., Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes (2004) Composites Science and Technology, 64 (13-14), pp. 2089-2096. , http://dx.doi.org/10.1016/j.compscitech.2004.03.010 Chung, D.D.L., Review: Electromagnetic interference shielding effectiveness of carbon materials (2001) Carbon, 39 (2), pp. 279-285. , http://dx.doi.org/10.1016/S0008-6223(00)00184-6 Sanjinésa, R., Abadb, M.D., Vâjua, C.R., Smajdaa, R., Mionića, M., Magreza, A., Electrical properties and applications of carbon based nanocomposite materials: An overview (2011) Surface and Coatings Technology, 206 (4), pp. 727-733. , http://dx.doi.org/10.1016/j.surfcoat.2011.01.025 Iijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354, pp. 56-58. , http://dx.doi.org/10.1038/354056a0 Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M., Exceptionally high Young's modulus observed for individual carbon nanotubes (1996) Nature, 381, pp. 678-680. , http://dx.doi.org/10.1038/381678a0 Saito, R., Dresselhaus, G., Dresselhaus, M.S., (1998) Physical Properties of Carbon Nanotubes, , London: Imperial College Press Wei, C., Cho, K., Srivastava, D., Tensile strength of carbon nanotubes under realistic temperature and strain rate (2003) Physical Review B, 67 (11), pp. 115407-115412. , http://dx.doi.org/10.1103/PhysRevB.67.115407 Vaia, R.A., Wagner, H.D., Framework for nanocomposites (2004) Materials Today, 7 (11), pp. 32-37. , http://dx.doi.org/10.1016/S1369-7021(04)00506-1 Ma, P.C., Siddiqui, N.A., Marom, G.J., Kim, K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review (2010) Composites Part A: Applied Science and Manufacturing, 41 (10), pp. 1345-1367. , http://dx.doi.org/10.1016/j.compositesa.2010.07.003 Lux, F., Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials (1993) Journal of Materials Science, 28 (2), pp. 285-301. , http://dx.doi.org/10.1007/BF00357799 Strümpler, R., Glatz-Reichenback, J., Conducting polymers composites (1999) Journal of Electroceramics, 3 (4), pp. 329-346. , http://dx.doi.org/10.1023/A:1009909812823 Ponomarenko, A.T., Shevchenko, V.G., Enikolopyan, N.S., Formation processes and properties of conducting polymer composites (1990) Advances in Polymer Science, 96, pp. 125-147. , http://dx.doi.org/10.1007/3-540-52791-5_4 Hernández, J.J., García-Gutiérrez, M.C., Nogales, A., Rueda, D.R., Ezquerra, T.A., Small-angle x-ray scattering of single-wall carbon nanotubes dispersed in molten poly(ethylene terephthalate) (2006) Composites Science and Technology, 66 (15), pp. 2629-2632. , http://dx.doi.org/10.1016/j.compscitech.2006.05.008 García-Gutiérrez, M.C., Nogales, A., Hernández, J.J., Rueda, D.R., Ezquerra, T.A., X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites (2007) Óptica Pura y Aplicada, 40 (2), pp. 195-205 Martin, J.E., Hurd, A.J., Scattering from fractals (1987) Journal of Applied Crystallography, 20 (2), pp. 61-78. , http://dx.doi.org/10.1107/S0021889887087107 Rols, S., Almairac, R., Henrard, L., Anglaret, E., Sauvajol, J.L., Diameter distribution of single wall carbon nanotubes in nanobundles (2000) European. Physical Journal B, 18 (2), pp. 201-205. , http://dx.doi.org/10.1007/s100510070049 Bauer, B.J., Hobbie, E.K., Becker, M.L., Small-angle neutron scattering from labeled single-wall carbon nanotubes (2006) Macromolecules, 39 (7), pp. 2637-2642. , http://dx.doi.org/10.1021/ma0527303 Schaefer, D.W., Zhao, J., Brown, J.M., Anderson, D.P., Tomlin, D.W., Morphology of dispersed carbon single-walled nanotubes (2003) Chemical Physics Letters, 375 (3-4), pp. 369-375. , http://dx.doi.org/10.1016/S0009-2614(03)00867-4 Zhou, W., Islam, M.F., Wang, H., Ho, D.L., Yodh, A.G., Winey, K.I., Small angle neutron scattering from single-wall carbon nanotube suspensions: Evidence for isolated rigid rods and rod networks (2004) Chemical Physics Letters, 384, pp. 185-189. , http://dx.doi.org/10.1016/j.cplett.2003.11.106 César, J., Paoli, M.A., Andrade, J.C.A., Determinação da densidade de sólidos e líquidos (2004) Chemkeys, pp. 1-8 Westfahl, H., Jr., Cardoso, M.B., Accessing the hidden lamellar nanostructure of semi-crystalline nascent polymers by small-angle x-ray scattering contrast variation (2011) Journal of Applied Crystallography, 44 (5), pp. 1123-1126. , http://dx.doi.org/10.1107/S0021889811033255 Stephan, C., Nguywn, T.P., Lahr, B., Blau, W., Lefrant, S., Chauvet, O., Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites (2002) Journal of Materials Research, 17 (2), pp. 396-400. , http://dx.doi.org/10.1557/JMR.2002.0055 Kim, H.M., Kim, K., Lee, S.J., Joo, J., Yoon, H.S., Cho, S.J., Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: Application to electromagnetic interference shielding (2004) Current Applied Physics, 4 (6), pp. 577-580. , http://dx.doi.org/10.1016/j.cap.2004.01.022 Sundaray, B., Subramanian, V., Natarajan, T.S., Krishnamurthy, K., Electrical conductivity of a single electrospun fiber of poly (methyl methacrylate) and multiwalled carbon nanotube nanocomposite (2006) Applied Physics Letters, 88 (14), pp. 143114-143116. , http://dx.doi.org/10.1063/1.2193462 Balberg, I., Tunneling and nonuniversal conductivity in composite materials (1987) Physical Review Letters, 59 (12), pp. 1305-1308. , http://dx.doi.org/10.1103/PhysRevLett.59.1305, PMid:10035198 Newnham, R.E., Skinner, D.P., Cross, L.E., Connectivity and piezoelectric-pyroelectric composites (1978) Materials Research Bulletin, 13 (5), pp. 525-536. , http://dx.doi.org/10.1016/0025-5408(78)90161-7 Kirkpatrick, S., Percolation and conduction (1973) Reviews and Modern Physics, 45 (4), pp. 574-588. , http://dx.doi.org/10.1103/RevModPhys.45.574 Balberg, I., Binenbaum, N., Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks (1983) Physical Review B, 28, pp. 3799-3812. , http://dx.doi.org/10.1103/PhysRevB.28.3799 Heo, S.I., Yun, C., Oh, K.S., Han, K.S., Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells (2006) Advanced Composite Materials, 15, pp. 115-126. , http://dx.doi.org/10.1163/156855106776829356 Celzard, A., McRae, E., Deleuze, C., Dufort, M., Furdin, G., Marêché, J.F., Critical concentration in percolating systems containing a high-aspect-ratio filler (1996) Physical Review B, 53, pp. 6209-6214. , http://dx.doi.org/10.1103/PhysRevB.53.6209