dc.creatorDa Silva Leite Coelho P.H.
dc.creatorMarchesin M.S.
dc.creatorMorales A.R.
dc.creatorBartoli J.R.
dc.date2014
dc.date2015-06-25T17:52:40Z
dc.date2015-11-26T14:18:37Z
dc.date2015-06-25T17:52:40Z
dc.date2015-11-26T14:18:37Z
dc.date.accessioned2018-03-28T21:19:54Z
dc.date.available2018-03-28T21:19:54Z
dc.identifier
dc.identifierMaterials Research. Universidade Federal De Sao Carlos, v. 17, n. , p. 127 - 132, 2014.
dc.identifier15161439
dc.identifier10.1590/S1516-14392014005000059
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84908133797&partnerID=40&md5=66150fef8e743cf1d056a50606e92fec
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86314
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86314
dc.identifier2-s2.0-84908133797
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243686
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionNanocomposites of poly (methyl methacrylate) (PMMA) and carbon nanotubes have a high potential for applications where conductivity and low specific weight are required. This piece of work concerns investigations of the level of dispersion and morphology on the electrical properties of in situ polymerized nanocomposites in different concentrations of multi-walled carbon nanotubes (MWCNT) in a PMMA matrix. The electrical conductivity was measured by the four point probe. The morphology and dispersion was analyzed by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). The correlation between electrical conductivity and the MWCNT amount, presented a typical percolation behavior, whose electrical percolation threshold determined by power law relationship was 0.2 vol. (%) The exponent t from the percolation power law indicated the formation of a 3D network of randomly arranged MWCNT. SAXS detected that the structures are intermediate to disks or spheres indicating fractal geometry for the MWCNT aggregates instead of isolated rods. HR-TEM images allowed us to observe the MWCNT individually dispersed into the matrix, revealing their distribution without preferential space orientation and absence of significant damage to the walls. The combined results of SAXS and HR-TEM suggest that MWCNT into the polymeric matrix might present interconnected aggregates and some dispersed single structures.
dc.description17
dc.description
dc.description127
dc.description132
dc.descriptionCNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionBauhofer, W., Kovacs, J.Z., A review and analysis of electrical percolation in carbon nanotube polymer composites (2009) Composites Science and Technology, 69 (10), pp. 1486-1498. , http://dx.doi.org/10.1016/j.compscitech.2008.06.018
dc.descriptionHori, M., Aoki, T., Ohira, Y., Yano, S., New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin (2001) Composites Part A: Applied Science and Manufacturing, 32 (2), pp. 287-290. , http://dx.doi.org/10.1016/S1359-835X(00)00141-X
dc.descriptionMarcq, F., Demont, P., Monfraix, P., Peigney, A., Laurent Ch., Falact, T., Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives (2011) Microelectronics Reliability, 51 (7), pp. 1230-1234. , http://dx.doi.org/10.1016/j.microrel.2011.03.020
dc.descriptionLi, C., Liang, T., Lu, W., Tang, C., Hu, X., Cao, M., Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes (2004) Composites Science and Technology, 64 (13-14), pp. 2089-2096. , http://dx.doi.org/10.1016/j.compscitech.2004.03.010
dc.descriptionChung, D.D.L., Review: Electromagnetic interference shielding effectiveness of carbon materials (2001) Carbon, 39 (2), pp. 279-285. , http://dx.doi.org/10.1016/S0008-6223(00)00184-6
dc.descriptionSanjinésa, R., Abadb, M.D., Vâjua, C.R., Smajdaa, R., Mionića, M., Magreza, A., Electrical properties and applications of carbon based nanocomposite materials: An overview (2011) Surface and Coatings Technology, 206 (4), pp. 727-733. , http://dx.doi.org/10.1016/j.surfcoat.2011.01.025
dc.descriptionIijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354, pp. 56-58. , http://dx.doi.org/10.1038/354056a0
dc.descriptionTreacy, M.M.J., Ebbesen, T.W., Gibson, J.M., Exceptionally high Young's modulus observed for individual carbon nanotubes (1996) Nature, 381, pp. 678-680. , http://dx.doi.org/10.1038/381678a0
dc.descriptionSaito, R., Dresselhaus, G., Dresselhaus, M.S., (1998) Physical Properties of Carbon Nanotubes, , London: Imperial College Press
dc.descriptionWei, C., Cho, K., Srivastava, D., Tensile strength of carbon nanotubes under realistic temperature and strain rate (2003) Physical Review B, 67 (11), pp. 115407-115412. , http://dx.doi.org/10.1103/PhysRevB.67.115407
dc.descriptionVaia, R.A., Wagner, H.D., Framework for nanocomposites (2004) Materials Today, 7 (11), pp. 32-37. , http://dx.doi.org/10.1016/S1369-7021(04)00506-1
dc.descriptionMa, P.C., Siddiqui, N.A., Marom, G.J., Kim, K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review (2010) Composites Part A: Applied Science and Manufacturing, 41 (10), pp. 1345-1367. , http://dx.doi.org/10.1016/j.compositesa.2010.07.003
dc.descriptionLux, F., Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials (1993) Journal of Materials Science, 28 (2), pp. 285-301. , http://dx.doi.org/10.1007/BF00357799
dc.descriptionStrümpler, R., Glatz-Reichenback, J., Conducting polymers composites (1999) Journal of Electroceramics, 3 (4), pp. 329-346. , http://dx.doi.org/10.1023/A:1009909812823
dc.descriptionPonomarenko, A.T., Shevchenko, V.G., Enikolopyan, N.S., Formation processes and properties of conducting polymer composites (1990) Advances in Polymer Science, 96, pp. 125-147. , http://dx.doi.org/10.1007/3-540-52791-5_4
dc.descriptionHernández, J.J., García-Gutiérrez, M.C., Nogales, A., Rueda, D.R., Ezquerra, T.A., Small-angle x-ray scattering of single-wall carbon nanotubes dispersed in molten poly(ethylene terephthalate) (2006) Composites Science and Technology, 66 (15), pp. 2629-2632. , http://dx.doi.org/10.1016/j.compscitech.2006.05.008
dc.descriptionGarcía-Gutiérrez, M.C., Nogales, A., Hernández, J.J., Rueda, D.R., Ezquerra, T.A., X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites (2007) Óptica Pura y Aplicada, 40 (2), pp. 195-205
dc.descriptionMartin, J.E., Hurd, A.J., Scattering from fractals (1987) Journal of Applied Crystallography, 20 (2), pp. 61-78. , http://dx.doi.org/10.1107/S0021889887087107
dc.descriptionRols, S., Almairac, R., Henrard, L., Anglaret, E., Sauvajol, J.L., Diameter distribution of single wall carbon nanotubes in nanobundles (2000) European. Physical Journal B, 18 (2), pp. 201-205. , http://dx.doi.org/10.1007/s100510070049
dc.descriptionBauer, B.J., Hobbie, E.K., Becker, M.L., Small-angle neutron scattering from labeled single-wall carbon nanotubes (2006) Macromolecules, 39 (7), pp. 2637-2642. , http://dx.doi.org/10.1021/ma0527303
dc.descriptionSchaefer, D.W., Zhao, J., Brown, J.M., Anderson, D.P., Tomlin, D.W., Morphology of dispersed carbon single-walled nanotubes (2003) Chemical Physics Letters, 375 (3-4), pp. 369-375. , http://dx.doi.org/10.1016/S0009-2614(03)00867-4
dc.descriptionZhou, W., Islam, M.F., Wang, H., Ho, D.L., Yodh, A.G., Winey, K.I., Small angle neutron scattering from single-wall carbon nanotube suspensions: Evidence for isolated rigid rods and rod networks (2004) Chemical Physics Letters, 384, pp. 185-189. , http://dx.doi.org/10.1016/j.cplett.2003.11.106
dc.descriptionCésar, J., Paoli, M.A., Andrade, J.C.A., Determinação da densidade de sólidos e líquidos (2004) Chemkeys, pp. 1-8
dc.descriptionWestfahl, H., Jr., Cardoso, M.B., Accessing the hidden lamellar nanostructure of semi-crystalline nascent polymers by small-angle x-ray scattering contrast variation (2011) Journal of Applied Crystallography, 44 (5), pp. 1123-1126. , http://dx.doi.org/10.1107/S0021889811033255
dc.descriptionStephan, C., Nguywn, T.P., Lahr, B., Blau, W., Lefrant, S., Chauvet, O., Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites (2002) Journal of Materials Research, 17 (2), pp. 396-400. , http://dx.doi.org/10.1557/JMR.2002.0055
dc.descriptionKim, H.M., Kim, K., Lee, S.J., Joo, J., Yoon, H.S., Cho, S.J., Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: Application to electromagnetic interference shielding (2004) Current Applied Physics, 4 (6), pp. 577-580. , http://dx.doi.org/10.1016/j.cap.2004.01.022
dc.descriptionSundaray, B., Subramanian, V., Natarajan, T.S., Krishnamurthy, K., Electrical conductivity of a single electrospun fiber of poly (methyl methacrylate) and multiwalled carbon nanotube nanocomposite (2006) Applied Physics Letters, 88 (14), pp. 143114-143116. , http://dx.doi.org/10.1063/1.2193462
dc.descriptionBalberg, I., Tunneling and nonuniversal conductivity in composite materials (1987) Physical Review Letters, 59 (12), pp. 1305-1308. , http://dx.doi.org/10.1103/PhysRevLett.59.1305, PMid:10035198
dc.descriptionNewnham, R.E., Skinner, D.P., Cross, L.E., Connectivity and piezoelectric-pyroelectric composites (1978) Materials Research Bulletin, 13 (5), pp. 525-536. , http://dx.doi.org/10.1016/0025-5408(78)90161-7
dc.descriptionKirkpatrick, S., Percolation and conduction (1973) Reviews and Modern Physics, 45 (4), pp. 574-588. , http://dx.doi.org/10.1103/RevModPhys.45.574
dc.descriptionBalberg, I., Binenbaum, N., Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks (1983) Physical Review B, 28, pp. 3799-3812. , http://dx.doi.org/10.1103/PhysRevB.28.3799
dc.descriptionHeo, S.I., Yun, C., Oh, K.S., Han, K.S., Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells (2006) Advanced Composite Materials, 15, pp. 115-126. , http://dx.doi.org/10.1163/156855106776829356
dc.descriptionCelzard, A., McRae, E., Deleuze, C., Dufort, M., Furdin, G., Marêché, J.F., Critical concentration in percolating systems containing a high-aspect-ratio filler (1996) Physical Review B, 53, pp. 6209-6214. , http://dx.doi.org/10.1103/PhysRevB.53.6209
dc.languageen
dc.publisherUniversidade Federal de Sao Carlos
dc.relationMaterials Research
dc.rightsaberto
dc.sourceScopus
dc.titleElectrical Percolation, Morphological And Dispersion Properties Of Mwcnt/pmma Nanocomposites
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución