Actas de congresos
Upper Bounds For Commutative Group Codes: The Odd Case
Registro en:
8589748049; 9788589748049
2006 International Telecommunications Symposium, Its. , v. , n. , p. 367 - 369, 2006.
10.1109/ITS.2006.4433300
2-s2.0-50449086226
Autor
De Siqueira R.M.
Rodrigues Costa S.I.
Institución
Resumen
Good spherical codes must have large minimum squared distance. An important quota in the theory of spherical codes is the maximum number of points M(n, ρ) displayed on the sphere Sn-1, having a minimum squared distance ρ. The aim of this work is to study this problem restricted to the class of group codes. We establish a tighter bound for the number of points of a commutative group code in odd dimension, extending the bounds of [6]. © 2006 IEEE.
367 369 Ericson, T., Zinoviev, V., Codes on Euclidian Spheres (2001) North-Holland Mahtematical Libray, , Elsevier Science Pub Co Vaishampayan, V., Costa, S.I.R., Curves on a Sphere, Shift-Map Dynamics, and Error Control for Continuos Alphabet Sources (2003) IEEE Transaction on Information Theory, 49 (7). , July Costa, S.I.R., Muniz, M., Agustini, E., Palazzo, R., Graphs, Tessellations, and Perfect Codes on Flat Tori (2004) IEEE Transaction on Information Theory, 50 (10). , October Ingermasson, I., Commutative group codes for the Gaussian Channel (1973) IEEE Transaction on Information Theory, IT-19, pp. 215-219. , Mar Gantmacher, F.R., (1959) The theory of matrices, 1. , Chelsea, New York Siqueira, R., Costa, S.I.R., Minimum Distance Upper Bounds for Commutative Group Codes (2006) Proceedings of IEEE Information Theory Workshop (ITW, , Uruguay, March 13-17 Slepian, D., Group codes for the Gaussian Channel (1968) The Bell System Technical Journal, 4 (7), pp. 575-602. , April Sloane, N.J.A., Conway, J.H., Sphere Packings, Lattices and Groups (1991) Springer-Verlag , 3 edt Sloane, N.J.A., Nebe, G., Table of Densest Packings Presently Known, , http://www.research.att.com/njas/lattices/density.html, published electronically at