dc.creatorDe Siqueira R.M.
dc.creatorRodrigues Costa S.I.
dc.date2006
dc.date2015-06-30T18:02:56Z
dc.date2015-11-26T14:17:44Z
dc.date2015-06-30T18:02:56Z
dc.date2015-11-26T14:17:44Z
dc.date.accessioned2018-03-28T21:18:51Z
dc.date.available2018-03-28T21:18:51Z
dc.identifier8589748049; 9788589748049
dc.identifier2006 International Telecommunications Symposium, Its. , v. , n. , p. 367 - 369, 2006.
dc.identifier
dc.identifier10.1109/ITS.2006.4433300
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-50449086226&partnerID=40&md5=cc65e68b503e2380bef6b2e097a7e679
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102834
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102834
dc.identifier2-s2.0-50449086226
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243420
dc.descriptionGood spherical codes must have large minimum squared distance. An important quota in the theory of spherical codes is the maximum number of points M(n, ρ) displayed on the sphere Sn-1, having a minimum squared distance ρ. The aim of this work is to study this problem restricted to the class of group codes. We establish a tighter bound for the number of points of a commutative group code in odd dimension, extending the bounds of [6]. © 2006 IEEE.
dc.description
dc.description
dc.description367
dc.description369
dc.descriptionEricson, T., Zinoviev, V., Codes on Euclidian Spheres (2001) North-Holland Mahtematical Libray, , Elsevier Science Pub Co
dc.descriptionVaishampayan, V., Costa, S.I.R., Curves on a Sphere, Shift-Map Dynamics, and Error Control for Continuos Alphabet Sources (2003) IEEE Transaction on Information Theory, 49 (7). , July
dc.descriptionCosta, S.I.R., Muniz, M., Agustini, E., Palazzo, R., Graphs, Tessellations, and Perfect Codes on Flat Tori (2004) IEEE Transaction on Information Theory, 50 (10). , October
dc.descriptionIngermasson, I., Commutative group codes for the Gaussian Channel (1973) IEEE Transaction on Information Theory, IT-19, pp. 215-219. , Mar
dc.descriptionGantmacher, F.R., (1959) The theory of matrices, 1. , Chelsea, New York
dc.descriptionSiqueira, R., Costa, S.I.R., Minimum Distance Upper Bounds for Commutative Group Codes (2006) Proceedings of IEEE Information Theory Workshop (ITW, , Uruguay, March 13-17
dc.descriptionSlepian, D., Group codes for the Gaussian Channel (1968) The Bell System Technical Journal, 4 (7), pp. 575-602. , April
dc.descriptionSloane, N.J.A., Conway, J.H., Sphere Packings, Lattices and Groups (1991) Springer-Verlag , 3 edt
dc.descriptionSloane, N.J.A., Nebe, G., Table of Densest Packings Presently Known, , http://www.research.att.com/njas/lattices/density.html, published electronically at
dc.languageen
dc.publisher
dc.relation2006 International Telecommunications Symposium, ITS
dc.rightsfechado
dc.sourceScopus
dc.titleUpper Bounds For Commutative Group Codes: The Odd Case
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución