Actas de congresos
Upper Bounds For A Commutative Group Code
Registro en:
142440035X; 9781424400355
2006 Ieee Information Theory Workshop, Itw 2006. , v. , n. , p. 275 - 277, 2006.
2-s2.0-33751032679
Autor
Monteiro De Siqueira R.
Costa S.I.R.
Institución
Resumen
Good spherical codes have large minimum squared distance. An important quota in the theory of spherical codes is the maximum number of points M(n,ρ) displayed on the sphere Sn-1, having a minimum squared distance ρ. The aim of this work is to study this problem within the class of group codes. We establish a bound for the number of points of a commutative group code in dimension even. © 2006 IEEE.
275 277 Ericson, T., Zinoviev, V., (2001) Codes on Euclidian Spheres, , North-Holland Mathematical Libray, Elsevier Science Pub Co Böröczky, K., Packing of spheres in spaces of constant curvature (1978) Acta Mathematica Academia Scientiarum Hungariacae, 32, pp. 243-261 Costa, S.I.R., Vaishampayan, V., Curves on a sphere, shift-map dynamics, and error control for continuos alphabet sources (2003) IEEE Transaction on Information Theory, 49 (7). , July Costa, S.I.R., Muniz, M., Agustini, E., Palazzo, R., Graphs, tessellations, and perfect codes on flat tori (2004) IEEE Transaction on Information Theory, 50 (10). , October Coxeter, H.S.M., An upper bound for the number of equal nonoverlapping spheres that can touch another of the same size (1963) Proc. Symp. in Pure Mathematics, 7, pp. 53-72 Coxeter, H.S.M., (1999) The Beauty of Geometry - Twelve Essays, , Reprinted in, Dover Publications, INC Ingermasson, I., Commutative group codes for the Gaussian channel (1973) IEEE Transaction on Information Theory, IT-19, pp. 215-219. , Mar Slepian, D., Group codes for the Gaussian channel (1968) The Bell System Technical Journal, 4 (7), pp. 575-602. , April Toth, L.F., Über die abschatzung des kürzesten abstandes zweier punkte eines auf einer kugelfläche liegenden punktsystemes (1943) Jber. Deut. Math Verein, 53, pp. 66-68 Sloane, N.J.A., Conway, J.H., (1991) Sphere Packings, Lattices and Groups, , Springer-Verlag 3 edt