dc.creator | Monteiro De Siqueira R. | |
dc.creator | Costa S.I.R. | |
dc.date | 2006 | |
dc.date | 2015-06-30T18:02:44Z | |
dc.date | 2015-11-26T14:16:54Z | |
dc.date | 2015-06-30T18:02:44Z | |
dc.date | 2015-11-26T14:16:54Z | |
dc.date.accessioned | 2018-03-28T21:17:57Z | |
dc.date.available | 2018-03-28T21:17:57Z | |
dc.identifier | 142440035X; 9781424400355 | |
dc.identifier | 2006 Ieee Information Theory Workshop, Itw 2006. , v. , n. , p. 275 - 277, 2006. | |
dc.identifier | | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-33751032679&partnerID=40&md5=66ebe9d42679f7b8ea4ed44f4aac979b | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/102814 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/102814 | |
dc.identifier | 2-s2.0-33751032679 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1243193 | |
dc.description | Good spherical codes have large minimum squared distance. An important quota in the theory of spherical codes is the maximum number of points M(n,ρ) displayed on the sphere Sn-1, having a minimum squared distance ρ. The aim of this work is to study this problem within the class of group codes. We establish a bound for the number of points of a commutative group code in dimension even. © 2006 IEEE. | |
dc.description | | |
dc.description | | |
dc.description | 275 | |
dc.description | 277 | |
dc.description | Ericson, T., Zinoviev, V., (2001) Codes on Euclidian Spheres, , North-Holland Mathematical Libray, Elsevier Science Pub Co | |
dc.description | Böröczky, K., Packing of spheres in spaces of constant curvature (1978) Acta Mathematica Academia Scientiarum Hungariacae, 32, pp. 243-261 | |
dc.description | Costa, S.I.R., Vaishampayan, V., Curves on a sphere, shift-map dynamics, and error control for continuos alphabet sources (2003) IEEE Transaction on Information Theory, 49 (7). , July | |
dc.description | Costa, S.I.R., Muniz, M., Agustini, E., Palazzo, R., Graphs, tessellations, and perfect codes on flat tori (2004) IEEE Transaction on Information Theory, 50 (10). , October | |
dc.description | Coxeter, H.S.M., An upper bound for the number of equal nonoverlapping spheres that can touch another of the same size (1963) Proc. Symp. in Pure Mathematics, 7, pp. 53-72 | |
dc.description | Coxeter, H.S.M., (1999) The Beauty of Geometry - Twelve Essays, , Reprinted in, Dover Publications, INC | |
dc.description | Ingermasson, I., Commutative group codes for the Gaussian channel (1973) IEEE Transaction on Information Theory, IT-19, pp. 215-219. , Mar | |
dc.description | Slepian, D., Group codes for the Gaussian channel (1968) The Bell System Technical Journal, 4 (7), pp. 575-602. , April | |
dc.description | Toth, L.F., Über die abschatzung des kürzesten abstandes zweier punkte eines auf einer kugelfläche liegenden punktsystemes (1943) Jber. Deut. Math Verein, 53, pp. 66-68 | |
dc.description | Sloane, N.J.A., Conway, J.H., (1991) Sphere Packings, Lattices and Groups, , Springer-Verlag 3 edt | |
dc.language | en | |
dc.publisher | | |
dc.relation | 2006 IEEE Information Theory Workshop, ITW 2006 | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Upper Bounds For A Commutative Group Code | |
dc.type | Actas de congresos | |