Actas de congresos
Handling Time-varying Tsp Instances
Registro en:
0780394879; 9780780394872
2006 Ieee Congress On Evolutionary Computation, Cec 2006. , v. , n. , p. 2830 - 2837, 2006.
2-s2.0-34547375852
Autor
De Franca F.O.
Gomes L.C.T.
De Castro L.N.
Von Zuben F.J.
Institución
Resumen
Multimodal optimization algorithms are being adapted to deal with dynamic optimization, mainly due to their ability to provide a faster reaction to unexpected changes in the optimization surface. The faster reaction may be associated with the existence of two important attributes in population-based algorithms devoted to multimodal optimization: simultaneous maintenance of multiple local optima in the population; and self-regulation of the population size along the search. The optimization surface may be subject to variations motivated by one of two main reasons: modification of the objectives to be fulfilled and change in parameters of the problem. An immuneinspired algorithm specially designed to deal with combinatorial optimization is applied here to solve time-varying TSP instances, with the cost of going from one city to the other being a function of time. The proposal presents favorable results when compared to the results produced by a high-performance ant colony optimization algorithm of the literature. © 2006 IEEE.
2830 2837 George, A.J.T., Gray, D., Receptor Editing During Affinity Maturation Imm. Today, 20 (4), p. 196 Zhou, A., Kang, L., Yan, Z., Solving Dynamic TSP with Evolutionary Approach in Real Time (2003) Proceedings of IEEE Congress on Evolutionary Computation, 2, pp. 951-957 Berek, C., Ziegner, M., The Maturation of the Immune Response (1993) Imm. Today, 14 (8), pp. 400-402 Blum, C., Dorigo, M., The Hyper-Cube Framework for Ant Colony Optimization (2004) IEEE Transactions on Systems, Man and Cybernetics Part B, 2 (34), pp. 1161-1172 Blum, C., Roli, A., Dorigo, M., HC-ACO: The Hyper-Cube Frame-work for Ant Colony Optimization (2001) Proceedings of Meta-Heuristics International Conference, 2, pp. 399-403 Eyckelhof, C.J., Snoek, M., Ant Systems for a Dynamic TSP: Ants Caught in a Traffic Jam (2002) Lecture Notes in Computer Science, 2463, pp. 88-99. , Proceedings of ANTS 2002, M. Dorigo, G. Di Caro, M. Samples Eds Applegate, D., Bixby, R., Chvátal, V., Cook, W., History - Solving Travelling Salesman Problem, , http://www.math.princeton.edu/tsp/histmain.html, Available on line Whitley, D., Rana, S., Heckendorn, R.B., Island Model Genetic Algorithms and Linearly Separable Problems (1997) Lecture Notes in Computer Science, 1305, pp. 109-125. , Proceedings of the AISB Workshop on Evolutionary Computation, D. Corne and J. L. Shapiro Eds de França, F.O., Bio-Inspired Algorithms applied to Dynamic Optimization (2005) Campinas: FEEC/Unicamp, , December, Master Dissertation, School of Electrical and Computer Engineering, State University of Campinas, 139 p, In Portuguese de França, F.O., de Castro, L.N., Von Zuben, F.J., An Artificial Immune Network for Multimodal Function Optimization on Dynamic Environments (2005) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 289-296 de França, F.O., de Castro, L.N., Von Zuben, F.J., A Max Min Ant System Applied To The Capacitated Clustering Problem (2004) Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, 1, pp. 755-764 de França, F.O., de Castro, L.N., Von Zuben, F.J., Max Min Ant System and Capacitated p-Medians Extensions and Improved Solutions (2005) Informatica, 29 (2), pp. l63-171 Glover, F.W., Kochenberger, G.A., (2002) Handbook of Metaheuristics, , Kluwer Academic Publishers Heller, I., The Travelling Salesmans Problem: Part 1 - Basic Facts (1954) Research Report, , George Washington University Logistics Research Project de Sousa, J.S., Gomes, L.C.T., Bezerra, G.B., de Castro, L.N., Von Zuben, F.J., An Immune-Evolutionary Algorithm for Multiple Rearrangements of Gene Expression Data (2004) Genetic Programming and Evolvable Machines, 5 (2), pp. 157-179 L. N. de Castro and F. J. Von Zuben. aiNet: An Artificial Immune Network for Data Analysis, In Data Mining: A Heuristic Approach, H. A. Abbass, R. A. Sarker, and C. S. Newton (Eds.), Idea Group Publishing, USA, Chapter XII, 2001, pp. 231-259de Castro, L.N., Von Zuben, F.J., Learning and Optimization Using the Clonal Selection Principle (2002) IEEE Transactions on Evolutionary Computation, 3 (6), pp. 239-251 de Castro, L.N., Timmis, J., An Artificial Immune Network for Multimodal Function Optimization (2002) Proceedings of the IEEE Congress on Evolutionary Computation, 1, pp. 699-674 Dorigo, M., Optimization, Learning and Natural Algorithms (1992), Ph.D.Thesis, Politecnico di Milano, ItalyFarina, M., Deb, K., Amato, P., Dynamic Multiobjective Optimization Problems: Test Cases, Approximation, and Applications (2004) IEEE Transactions on Evolutionary Computation, 8 (5), pp. 425-442. , October Guntsch, M., Middendorf, M., Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP (2001) EvoWorkshops, pp. 213-222 Guntsch, M., Middendorf, M., Schmeck, H., An Ant Colony Optimization Approach to Dynamic TSP (2001) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 860-867 Flood, M.M., The Traveling-Salesman Problem (1956) Operations Research, 4, pp. 61-75 Jerne, N.K., Towards a Network Theory of the Immune System (1974) Ann. Immunol. (Inst. Pasteur), 125 C, pp. 373-389 Nakaya, N., Yoshida, H., Miura, M., Genetic Approach to Dynamic Traveling Salesman Problem (2000) Proceedings of International Symposium on Information Theory and Its Applications, pp. 708-711 Antia, R., Pilyugin, S.S., Ahmed, R., Models of Immune Memory: On the Role of Cross-Reactive Stimulation, Competition, and Homeostasis in Maintaining Immune Memory (1998) Proc. Nat. Ac. Sc. USA, 95 (25), pp. 14926-14931 Lin, S., Kernighan, B.W., An Effective Heuristic Algorithm for the Travelling-Salesman Problem (1973) Operations Research, 21, pp. 498-516 Stützle, T., Hoos, H.H., The MAX-MIN Ant System and Local Search for the Traveling Salesman Problem (1997) Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 309-314 TSPLIB, A., (1995) Traveling Salesman Problem Library, , http://www.iwr. uni-heidelberg.de/groups/comopt/soft/TSPLIB95/TSPLlB.html Jin, Y., Branke, J., Evolutionary Optimization in Uncertain Environments - A Survey (2005) IEEE Transactions on Evolutionary Computation, 9 (3), pp. 303-317 Liu, Z., Kang, L., A Hybrid Algorithm of n-OPT and GA to Solve Dynamic TSP (2004) Lecture Notes in Computer Science, 3033, pp. 1030-1033. , Proceedings of the Grid and Cooperative Computing, M. Li, X.-H. Sun, Q. Deng, J. Ni Eds