dc.creatorDe Franca F.O.
dc.creatorGomes L.C.T.
dc.creatorDe Castro L.N.
dc.creatorVon Zuben F.J.
dc.date2006
dc.date2015-06-30T18:02:43Z
dc.date2015-11-26T14:16:53Z
dc.date2015-06-30T18:02:43Z
dc.date2015-11-26T14:16:53Z
dc.date.accessioned2018-03-28T21:17:55Z
dc.date.available2018-03-28T21:17:55Z
dc.identifier0780394879; 9780780394872
dc.identifier2006 Ieee Congress On Evolutionary Computation, Cec 2006. , v. , n. , p. 2830 - 2837, 2006.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34547375852&partnerID=40&md5=99ff9277087486d4c5e0425d18eceba9
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102812
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102812
dc.identifier2-s2.0-34547375852
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243187
dc.descriptionMultimodal optimization algorithms are being adapted to deal with dynamic optimization, mainly due to their ability to provide a faster reaction to unexpected changes in the optimization surface. The faster reaction may be associated with the existence of two important attributes in population-based algorithms devoted to multimodal optimization: simultaneous maintenance of multiple local optima in the population; and self-regulation of the population size along the search. The optimization surface may be subject to variations motivated by one of two main reasons: modification of the objectives to be fulfilled and change in parameters of the problem. An immuneinspired algorithm specially designed to deal with combinatorial optimization is applied here to solve time-varying TSP instances, with the cost of going from one city to the other being a function of time. The proposal presents favorable results when compared to the results produced by a high-performance ant colony optimization algorithm of the literature. © 2006 IEEE.
dc.description
dc.description
dc.description2830
dc.description2837
dc.descriptionGeorge, A.J.T., Gray, D., Receptor Editing During Affinity Maturation Imm. Today, 20 (4), p. 196
dc.descriptionZhou, A., Kang, L., Yan, Z., Solving Dynamic TSP with Evolutionary Approach in Real Time (2003) Proceedings of IEEE Congress on Evolutionary Computation, 2, pp. 951-957
dc.descriptionBerek, C., Ziegner, M., The Maturation of the Immune Response (1993) Imm. Today, 14 (8), pp. 400-402
dc.descriptionBlum, C., Dorigo, M., The Hyper-Cube Framework for Ant Colony Optimization (2004) IEEE Transactions on Systems, Man and Cybernetics Part B, 2 (34), pp. 1161-1172
dc.descriptionBlum, C., Roli, A., Dorigo, M., HC-ACO: The Hyper-Cube Frame-work for Ant Colony Optimization (2001) Proceedings of Meta-Heuristics International Conference, 2, pp. 399-403
dc.descriptionEyckelhof, C.J., Snoek, M., Ant Systems for a Dynamic TSP: Ants Caught in a Traffic Jam (2002) Lecture Notes in Computer Science, 2463, pp. 88-99. , Proceedings of ANTS 2002, M. Dorigo, G. Di Caro, M. Samples Eds
dc.descriptionApplegate, D., Bixby, R., Chvátal, V., Cook, W., History - Solving Travelling Salesman Problem, , http://www.math.princeton.edu/tsp/histmain.html, Available on line
dc.descriptionWhitley, D., Rana, S., Heckendorn, R.B., Island Model Genetic Algorithms and Linearly Separable Problems (1997) Lecture Notes in Computer Science, 1305, pp. 109-125. , Proceedings of the AISB Workshop on Evolutionary Computation, D. Corne and J. L. Shapiro Eds
dc.descriptionde França, F.O., Bio-Inspired Algorithms applied to Dynamic Optimization (2005) Campinas: FEEC/Unicamp, , December, Master Dissertation, School of Electrical and Computer Engineering, State University of Campinas, 139 p, In Portuguese
dc.descriptionde França, F.O., de Castro, L.N., Von Zuben, F.J., An Artificial Immune Network for Multimodal Function Optimization on Dynamic Environments (2005) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 289-296
dc.descriptionde França, F.O., de Castro, L.N., Von Zuben, F.J., A Max Min Ant System Applied To The Capacitated Clustering Problem (2004) Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, 1, pp. 755-764
dc.descriptionde França, F.O., de Castro, L.N., Von Zuben, F.J., Max Min Ant System and Capacitated p-Medians
dc.descriptionExtensions and Improved Solutions (2005) Informatica, 29 (2), pp. l63-171
dc.descriptionGlover, F.W., Kochenberger, G.A., (2002) Handbook of Metaheuristics, , Kluwer Academic Publishers
dc.descriptionHeller, I., The Travelling Salesmans Problem: Part 1 - Basic Facts (1954) Research Report, , George Washington University Logistics Research Project
dc.descriptionde Sousa, J.S., Gomes, L.C.T., Bezerra, G.B., de Castro, L.N., Von Zuben, F.J., An Immune-Evolutionary Algorithm for Multiple Rearrangements of Gene Expression Data (2004) Genetic Programming and Evolvable Machines, 5 (2), pp. 157-179
dc.descriptionL. N. de Castro and F. J. Von Zuben. aiNet: An Artificial Immune Network for Data Analysis, In Data Mining: A Heuristic Approach, H. A. Abbass, R. A. Sarker, and C. S. Newton (Eds.), Idea Group Publishing, USA, Chapter XII, 2001, pp. 231-259de Castro, L.N., Von Zuben, F.J., Learning and Optimization Using the Clonal Selection Principle (2002) IEEE Transactions on Evolutionary Computation, 3 (6), pp. 239-251
dc.descriptionde Castro, L.N., Timmis, J., An Artificial Immune Network for Multimodal Function Optimization (2002) Proceedings of the IEEE Congress on Evolutionary Computation, 1, pp. 699-674
dc.descriptionDorigo, M., Optimization, Learning and Natural Algorithms (1992), Ph.D.Thesis, Politecnico di Milano, ItalyFarina, M., Deb, K., Amato, P., Dynamic Multiobjective Optimization Problems: Test Cases, Approximation, and Applications (2004) IEEE Transactions on Evolutionary Computation, 8 (5), pp. 425-442. , October
dc.descriptionGuntsch, M., Middendorf, M., Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP (2001) EvoWorkshops, pp. 213-222
dc.descriptionGuntsch, M., Middendorf, M., Schmeck, H., An Ant Colony Optimization Approach to Dynamic TSP (2001) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 860-867
dc.descriptionFlood, M.M., The Traveling-Salesman Problem (1956) Operations Research, 4, pp. 61-75
dc.descriptionJerne, N.K., Towards a Network Theory of the Immune System (1974) Ann. Immunol. (Inst. Pasteur), 125 C, pp. 373-389
dc.descriptionNakaya, N., Yoshida, H., Miura, M., Genetic Approach to Dynamic Traveling Salesman Problem (2000) Proceedings of International Symposium on Information Theory and Its Applications, pp. 708-711
dc.descriptionAntia, R., Pilyugin, S.S., Ahmed, R., Models of Immune Memory: On the Role of Cross-Reactive Stimulation, Competition, and Homeostasis in Maintaining Immune Memory (1998) Proc. Nat. Ac. Sc. USA, 95 (25), pp. 14926-14931
dc.descriptionLin, S., Kernighan, B.W., An Effective Heuristic Algorithm for the Travelling-Salesman Problem (1973) Operations Research, 21, pp. 498-516
dc.descriptionStützle, T., Hoos, H.H., The MAX-MIN Ant System and Local Search for the Traveling Salesman Problem (1997) Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 309-314
dc.descriptionTSPLIB, A., (1995) Traveling Salesman Problem Library, , http://www.iwr. uni-heidelberg.de/groups/comopt/soft/TSPLIB95/TSPLlB.html
dc.descriptionJin, Y., Branke, J., Evolutionary Optimization in Uncertain Environments - A Survey (2005) IEEE Transactions on Evolutionary Computation, 9 (3), pp. 303-317
dc.descriptionLiu, Z., Kang, L., A Hybrid Algorithm of n-OPT and GA to Solve Dynamic TSP (2004) Lecture Notes in Computer Science, 3033, pp. 1030-1033. , Proceedings of the Grid and Cooperative Computing, M. Li, X.-H. Sun, Q. Deng, J. Ni Eds
dc.languageen
dc.publisher
dc.relation2006 IEEE Congress on Evolutionary Computation, CEC 2006
dc.rightsfechado
dc.sourceScopus
dc.titleHandling Time-varying Tsp Instances
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución