Actas de congresos
Control Of A Bioprocess Using Orthonormal Basis Function Fuzzy Models
Registro en:
780383532
Ieee International Conference On Fuzzy Systems. , v. 2, n. , p. 801 - 806, 2004.
10987584
10.1109/FUZZY.2004.1375504
2-s2.0-11144329656
Autor
Campello R.J.G.B.
Meleiro L.A.C.
Amaral W.C.
Institución
Resumen
Fuzzy models within the framework of orthonormal basis functions (OBF Fuzzy Models) were introduced in previous works and have shown to be a very promising approach to the areas of non-linear system identification and control since they exhibit several advantages over those dynamic model architectures usually adopted in the literature. In the present paper these models are reviewed and used as a basis for a predictive control scheme which is applied to the control of a process for ethyl alcohol (ethanol) production. 2
801 806 Yager, R.R., Filev, D.P., (1994) Essentials of Fuzzy Modeling and Control, , John Wiley & Sons Pedrycz, W., (1993) Fuzzy Control and Fuzzy Systems, , Research Studies Press/John Wiley & Sons, 2nd edition Takagi, T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and control (1985) IEEE Trans. Systems, Man and Cybernetics, SMC-15, pp. 116-132 Babuška, R., (1998) Fuzzy Modeling for Control, , Kluwer Academic Publishers Campello, R.J.G.B., Amaral, W.C., Modeling and linguistic knowledge extraction from systems using fuzzy relational models (2001) Fuzzy Sets and Systems, 121, pp. 113-126 Campello, R.J.G.B., Amaral, W.C., Towards true linguistic modeling through optimal numerical solutions (2003) International Journal of Systems Science, 34, pp. 139-157 Ninness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Trans. on Automatic Control, 42, pp. 515-521 Broome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168 Dumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7, pp. 367-382 Back, A.D., Tsoi, A.C., Nonlinear system identification using discrete Laguerre functions (1996) Journal of Systems Engineering, 6, pp. 194-207 Oliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G.A., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-571 Campello, R.J.G.B., Meleiro, L.A.C., Amaral, W.C., Maciel Filho, R., Identification of a bioprocess using Laguerre function based models (2001) Proc. 6th World Congress on Chemical Engineering, pp. CD. , Melbourne/Australia Oliveira, G.H.C., Campello, R.J.G.B., Amaral, W.C., Fuzzy models within orthonormal basis function framework (1999) Proc. 8th IEEE Internat. Conference on Fuzzy Svstems, pp. 957-962. , Seoul/Korea Fu, Y., Dumont, G.A., An optimum time scale for discrete Laguerre network (1993) IEEE Trans. on Automatic Control, 38 (6), pp. 934-938 Campello, R.J.G.B., Favier, G., Amaral, W.C., Optimal expansions of discrete-time Volterra models using Laguerre functions Automatica, , (to appear), nd Campello, R.J.G.B., Amaral, W.C., Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control (2002) Proc. 11th IEEE Internat. Conference on Fuzzy Systems, pp. 1399-1404. , Honolulu/USA Wahlberg, B., System identification using Kautz models (1994) IEEE Trans. on Automatic Control, 39 (6), pp. 1276-1282 Boyd, S., Chua, L.O., Fading memory and the problem of approximating nonlinear operators with Volterra series (1985) IEEE Trans. on Circuits and Systems, 32 (11), pp. 1150-1161 Ljung, L., (1999) System Identification: Theory for the User, , Prentice Hall, 2nd edition Zervos, C.C., Dumont, G.A., Deterministic adaptive control based on Laguerre series representation (1988) Int. J. Control, 48 (6), pp. 2333-2359 Wahlberg, B., Ljung, L., Hard frequency-domain model error bounds from least-squares like identification techniques (1992) IEEE Trans. on Automatic Control, 37 (7), pp. 900-912 Camacho, E.F., Bordons, C., (1999) Model Predictive Control, , Springer-Verlag Meleiro, L.A.C., Filho, R.M., A self-tuning adaptive control applied to an industrial large-scale ethanol production (2000) Computers and Chemical Engineering, 24 (2-7), pp. 925-930 Andrietta, S.R., Maugeri, F., Optimum design of a continuous fermentation unit of an industrial plant for alcohol production (1994) Advances in Bioprocess Engineering, pp. 47-52. , E. Galindo and O. T. Ramirez, Eds., Kluwer Academic Publishers Meleiro, L.A.C., Filho, R.M., Campello, R.J.G.B., Amaral, W.C., Hierarchical neural fuzzy models as a tool for process identification: A bioprocess application (2001) Application of Neural Networks and Other Learning Technologies in Process Engineering, , I. M. Mujtaba and M. A. Hussain, Eds. Imperial College Press Jang, J.-S.R., ANFIS: Adaptive-network-based fuzzy inference system (1993) IEEE Trans. Systems, Man and Cybernetics, 23, pp. 665-685 Setnes, M., Supervised fuzzy clustering for rule extraction (2000) IEEE Trans. Fuzzy Systems, 8, pp. 416-424 Delgado, M.R., Von Zuben, F.J., Gomide, F.A.C., Evolutionary design of Takagi-Sugeno fuzzy systems: A modular and hierarchical approach (2000) Proc. 9th IEEE Internat. Conference on Fuzzy Systems, pp. 447-452. , Houston/USA Güven, M.K., Passino, K.M., Avoiding exponential parameter growth in fuzzy systems (2001) IEEE Trans. Fuzzy Systems, 9, pp. 194-199