dc.creatorCampello R.J.G.B.
dc.creatorMeleiro L.A.C.
dc.creatorAmaral W.C.
dc.date2004
dc.date2015-06-26T14:24:30Z
dc.date2015-11-26T14:13:27Z
dc.date2015-06-26T14:24:30Z
dc.date2015-11-26T14:13:27Z
dc.date.accessioned2018-03-28T21:14:13Z
dc.date.available2018-03-28T21:14:13Z
dc.identifier780383532
dc.identifierIeee International Conference On Fuzzy Systems. , v. 2, n. , p. 801 - 806, 2004.
dc.identifier10987584
dc.identifier10.1109/FUZZY.2004.1375504
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-11144329656&partnerID=40&md5=fe9211593efa0869077c709183224d96
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94486
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94486
dc.identifier2-s2.0-11144329656
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242284
dc.descriptionFuzzy models within the framework of orthonormal basis functions (OBF Fuzzy Models) were introduced in previous works and have shown to be a very promising approach to the areas of non-linear system identification and control since they exhibit several advantages over those dynamic model architectures usually adopted in the literature. In the present paper these models are reviewed and used as a basis for a predictive control scheme which is applied to the control of a process for ethyl alcohol (ethanol) production.
dc.description2
dc.description
dc.description801
dc.description806
dc.descriptionYager, R.R., Filev, D.P., (1994) Essentials of Fuzzy Modeling and Control, , John Wiley & Sons
dc.descriptionPedrycz, W., (1993) Fuzzy Control and Fuzzy Systems, , Research Studies Press/John Wiley & Sons, 2nd edition
dc.descriptionTakagi, T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and control (1985) IEEE Trans. Systems, Man and Cybernetics, SMC-15, pp. 116-132
dc.descriptionBabuška, R., (1998) Fuzzy Modeling for Control, , Kluwer Academic Publishers
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Modeling and linguistic knowledge extraction from systems using fuzzy relational models (2001) Fuzzy Sets and Systems, 121, pp. 113-126
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Towards true linguistic modeling through optimal numerical solutions (2003) International Journal of Systems Science, 34, pp. 139-157
dc.descriptionNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Trans. on Automatic Control, 42, pp. 515-521
dc.descriptionBroome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168
dc.descriptionDumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7, pp. 367-382
dc.descriptionBack, A.D., Tsoi, A.C., Nonlinear system identification using discrete Laguerre functions (1996) Journal of Systems Engineering, 6, pp. 194-207
dc.descriptionOliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G.A., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-571
dc.descriptionCampello, R.J.G.B., Meleiro, L.A.C., Amaral, W.C., Maciel Filho, R., Identification of a bioprocess using Laguerre function based models (2001) Proc. 6th World Congress on Chemical Engineering, pp. CD. , Melbourne/Australia
dc.descriptionOliveira, G.H.C., Campello, R.J.G.B., Amaral, W.C., Fuzzy models within orthonormal basis function framework (1999) Proc. 8th IEEE Internat. Conference on Fuzzy Svstems, pp. 957-962. , Seoul/Korea
dc.descriptionFu, Y., Dumont, G.A., An optimum time scale for discrete Laguerre network (1993) IEEE Trans. on Automatic Control, 38 (6), pp. 934-938
dc.descriptionCampello, R.J.G.B., Favier, G., Amaral, W.C., Optimal expansions of discrete-time Volterra models using Laguerre functions Automatica, , (to appear), nd
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control (2002) Proc. 11th IEEE Internat. Conference on Fuzzy Systems, pp. 1399-1404. , Honolulu/USA
dc.descriptionWahlberg, B., System identification using Kautz models (1994) IEEE Trans. on Automatic Control, 39 (6), pp. 1276-1282
dc.descriptionBoyd, S., Chua, L.O., Fading memory and the problem of approximating nonlinear operators with Volterra series (1985) IEEE Trans. on Circuits and Systems, 32 (11), pp. 1150-1161
dc.descriptionLjung, L., (1999) System Identification: Theory for the User, , Prentice Hall, 2nd edition
dc.descriptionZervos, C.C., Dumont, G.A., Deterministic adaptive control based on Laguerre series representation (1988) Int. J. Control, 48 (6), pp. 2333-2359
dc.descriptionWahlberg, B., Ljung, L., Hard frequency-domain model error bounds from least-squares like identification techniques (1992) IEEE Trans. on Automatic Control, 37 (7), pp. 900-912
dc.descriptionCamacho, E.F., Bordons, C., (1999) Model Predictive Control, , Springer-Verlag
dc.descriptionMeleiro, L.A.C., Filho, R.M., A self-tuning adaptive control applied to an industrial large-scale ethanol production (2000) Computers and Chemical Engineering, 24 (2-7), pp. 925-930
dc.descriptionAndrietta, S.R., Maugeri, F., Optimum design of a continuous fermentation unit of an industrial plant for alcohol production (1994) Advances in Bioprocess Engineering, pp. 47-52. , E. Galindo and O. T. Ramirez, Eds., Kluwer Academic Publishers
dc.descriptionMeleiro, L.A.C., Filho, R.M., Campello, R.J.G.B., Amaral, W.C., Hierarchical neural fuzzy models as a tool for process identification: A bioprocess application (2001) Application of Neural Networks and Other Learning Technologies in Process Engineering, , I. M. Mujtaba and M. A. Hussain, Eds. Imperial College Press
dc.descriptionJang, J.-S.R., ANFIS: Adaptive-network-based fuzzy inference system (1993) IEEE Trans. Systems, Man and Cybernetics, 23, pp. 665-685
dc.descriptionSetnes, M., Supervised fuzzy clustering for rule extraction (2000) IEEE Trans. Fuzzy Systems, 8, pp. 416-424
dc.descriptionDelgado, M.R., Von Zuben, F.J., Gomide, F.A.C., Evolutionary design of Takagi-Sugeno fuzzy systems: A modular and hierarchical approach (2000) Proc. 9th IEEE Internat. Conference on Fuzzy Systems, pp. 447-452. , Houston/USA
dc.descriptionGüven, M.K., Passino, K.M., Avoiding exponential parameter growth in fuzzy systems (2001) IEEE Trans. Fuzzy Systems, 9, pp. 194-199
dc.languageen
dc.publisher
dc.relationIEEE International Conference on Fuzzy Systems
dc.rightsfechado
dc.sourceScopus
dc.titleControl Of A Bioprocess Using Orthonormal Basis Function Fuzzy Models
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución