Artículos de revistas
Optimal Expansions Of Discrete-time Volterra Models Using Laguerre Functions
Registro en:
Automatica. , v. 40, n. 5, p. 815 - 822, 2004.
51098
10.1016/j.automatica.2003.11.016
2-s2.0-1642276131
Autor
Campello R.J.G.B.
Favier G.
Do Amaral W.C.
Institución
Resumen
This work is concerned with the optimization of Laguerre bases for the orthonormal series expansion of discrete-time Volterra models. The aim is to minimize the number of Laguerre functions associated with a given series truncation error, thus reducing the complexity of the resulting finite-dimensional representation. Fu and Dumont (IEEE Trans. Automatic Control 38(6) (1993) 934) indirectly approached this problem in the context of linear systems by minimizing an upper bound for the error resulting from the truncated Laguerre expansion of impulse response models, which are equivalent to first-order Volterra models. A generalization of the work mentioned above focusing on Volterra models of any order is presented in this paper. The main result is the derivation of analytic strict global solutions for the optimal expansion of the Volterra kernels either using an independent Laguerre basis for each kernel or using a common basis for all the kernels. © 2003 Elsevier Ltd. All rights reserved. 40 5 815 822 Bazaraa, M.S., Sherali, H.D., Shetty, C.M., (1993) Nonlinear Programming: Theory and Algorithms 2nd Ed., , New York: Wiley Billings, S.A., Identification of nonlinear systems - A survey (1980) IEE Proceedings Part D, 127 (6), pp. 272-285 Boyd, S., Chua, L.O., Fading memory and the problem of approximating nonlinear operators with Volterra series (1985) IEEE Transactions on Circuits and Systems, 32 (11), pp. 1150-1161 Broome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168 Campello, R.J.G.B., (2002) New Architectures and Methodologies for Modeling and Control of Complex Systems Combining Classical and Modern Tools, , Ph.D. thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas/SP, Brazil (in Portuguese) Campello, R.J.G.B., Amaral, W.C., Favier, G., Optimal Laguerre series expansion of discrete Volterra models (2001) Proceedings of the European Control Conference, pp. 372-377. , Porto/Portugal Clowes, G.J., Choice of the time-scaling factor for linear system approximation using orthonormal Laguerre functions (1965) IEEE Transactions on Automatic Control, 10, pp. 487-489 Desoer, C.A., Vidyasagar, M., (1975) Feedback Systems: Input-output Properties, , New York: Academic Press Doyle III, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control Using Volterra Models, , Berlin: Springer Dumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) International Journal of Adaptive Control and Signal Processing, 7, pp. 367-382 Elshafei, A.-L., Dumont, G.A., Elnaggar, A., Adaptive GPC based on Laguerre filters modelling (1994) Automatica, 30 (12), pp. 1913-1920 Eykhoff, P., (1974) System Identification: Parameter and State Estimation, , New York: Wiley Finn, C., Wahlberg, B., Ydstie, B.E., Constrained predictive control using orthogonal expansions (1993) A.I.Ch.E. Journal, 39 (11), pp. 1810-1826 Fu, Y., Dumont, G.A., An optimum time scale for discrete Laguerre network (1993) IEEE Transactions on Automatic Control, 38 (6), pp. 934-938 Heuberger, P.S.C., Van Den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Transactions on Automatic Control, 40, pp. 451-465 Maner, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models (1996) Automatica, 32 (9), pp. 1285-1301 Marmarelis, V.Z., Identification of nonlinear biological systems using Laguerre expansions of kernels (1993) Annals of Biomedical Engineering, 21, pp. 573-589 Ninness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Transactions on Automatic Control, 42, pp. 515-521 Oliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G.A., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-571 Schetzen, M., (1980) The Volterra and Wiener Theories of Nonlinear Systems, , New York: Wiley Tanguy, N., Morvan, R., Vilbé, P., Calvez, L.C., Online optimization of the time scale in adaptive Laguerre-based filters (2000) IEEE Transactions on Signal Processing, 48, pp. 1184-1187 Tanguy, N., Vilbé, P., Calvez, L.C., Optimum choice of free parameter in orthonormal approximations (1995) IEEE Transactions on Automatic Control, 40, pp. 1811-1813 Wahlberg, B., System identification using Laguerre models (1991) IEEE Transactions on Automatic Control, 36 (5), pp. 551-562 Wahlberg, B., System identification using Kautz models (1994) IEEE Transactions on Automatic Control, 39 (6), pp. 1276-1282 Wahlberg, B., Ljung, L., Hard frequency-domain model error bounds from least-squares like identification techniques (1992) IEEE Transactions on Automatic Control, 37 (7), pp. 900-912 Wahlberg, B., Mäkilä, P.M., Approximation of stable linear dynamical systems using Laguerre and Kautz functions (1996) Automatica, 32 (5), pp. 693-708 Wiener, N., (1958) Nonlinear Problems in Random Theory, , New York: Wiley Zervos, C.C., Dumont, G.A., Deterministic adaptive control based on Laguerre series representation (1988) International Journal of Control, 48 (6), pp. 2333-2359