dc.creatorCampello R.J.G.B.
dc.creatorFavier G.
dc.creatorDo Amaral W.C.
dc.date2004
dc.date2015-06-26T14:23:34Z
dc.date2015-11-26T14:12:01Z
dc.date2015-06-26T14:23:34Z
dc.date2015-11-26T14:12:01Z
dc.date.accessioned2018-03-28T21:12:36Z
dc.date.available2018-03-28T21:12:36Z
dc.identifier
dc.identifierAutomatica. , v. 40, n. 5, p. 815 - 822, 2004.
dc.identifier51098
dc.identifier10.1016/j.automatica.2003.11.016
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-1642276131&partnerID=40&md5=eebac21f3e8dbb2dc33952344a337ce1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94203
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94203
dc.identifier2-s2.0-1642276131
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241880
dc.descriptionThis work is concerned with the optimization of Laguerre bases for the orthonormal series expansion of discrete-time Volterra models. The aim is to minimize the number of Laguerre functions associated with a given series truncation error, thus reducing the complexity of the resulting finite-dimensional representation. Fu and Dumont (IEEE Trans. Automatic Control 38(6) (1993) 934) indirectly approached this problem in the context of linear systems by minimizing an upper bound for the error resulting from the truncated Laguerre expansion of impulse response models, which are equivalent to first-order Volterra models. A generalization of the work mentioned above focusing on Volterra models of any order is presented in this paper. The main result is the derivation of analytic strict global solutions for the optimal expansion of the Volterra kernels either using an independent Laguerre basis for each kernel or using a common basis for all the kernels. © 2003 Elsevier Ltd. All rights reserved.
dc.description40
dc.description5
dc.description815
dc.description822
dc.descriptionBazaraa, M.S., Sherali, H.D., Shetty, C.M., (1993) Nonlinear Programming: Theory and Algorithms 2nd Ed., , New York: Wiley
dc.descriptionBillings, S.A., Identification of nonlinear systems - A survey (1980) IEE Proceedings Part D, 127 (6), pp. 272-285
dc.descriptionBoyd, S., Chua, L.O., Fading memory and the problem of approximating nonlinear operators with Volterra series (1985) IEEE Transactions on Circuits and Systems, 32 (11), pp. 1150-1161
dc.descriptionBroome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168
dc.descriptionCampello, R.J.G.B., (2002) New Architectures and Methodologies for Modeling and Control of Complex Systems Combining Classical and Modern Tools, , Ph.D. thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas/SP, Brazil (in Portuguese)
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Favier, G., Optimal Laguerre series expansion of discrete Volterra models (2001) Proceedings of the European Control Conference, pp. 372-377. , Porto/Portugal
dc.descriptionClowes, G.J., Choice of the time-scaling factor for linear system approximation using orthonormal Laguerre functions (1965) IEEE Transactions on Automatic Control, 10, pp. 487-489
dc.descriptionDesoer, C.A., Vidyasagar, M., (1975) Feedback Systems: Input-output Properties, , New York: Academic Press
dc.descriptionDoyle III, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control Using Volterra Models, , Berlin: Springer
dc.descriptionDumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) International Journal of Adaptive Control and Signal Processing, 7, pp. 367-382
dc.descriptionElshafei, A.-L., Dumont, G.A., Elnaggar, A., Adaptive GPC based on Laguerre filters modelling (1994) Automatica, 30 (12), pp. 1913-1920
dc.descriptionEykhoff, P., (1974) System Identification: Parameter and State Estimation, , New York: Wiley
dc.descriptionFinn, C., Wahlberg, B., Ydstie, B.E., Constrained predictive control using orthogonal expansions (1993) A.I.Ch.E. Journal, 39 (11), pp. 1810-1826
dc.descriptionFu, Y., Dumont, G.A., An optimum time scale for discrete Laguerre network (1993) IEEE Transactions on Automatic Control, 38 (6), pp. 934-938
dc.descriptionHeuberger, P.S.C., Van Den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Transactions on Automatic Control, 40, pp. 451-465
dc.descriptionManer, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models (1996) Automatica, 32 (9), pp. 1285-1301
dc.descriptionMarmarelis, V.Z., Identification of nonlinear biological systems using Laguerre expansions of kernels (1993) Annals of Biomedical Engineering, 21, pp. 573-589
dc.descriptionNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Transactions on Automatic Control, 42, pp. 515-521
dc.descriptionOliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G.A., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-571
dc.descriptionSchetzen, M., (1980) The Volterra and Wiener Theories of Nonlinear Systems, , New York: Wiley
dc.descriptionTanguy, N., Morvan, R., Vilbé, P., Calvez, L.C., Online optimization of the time scale in adaptive Laguerre-based filters (2000) IEEE Transactions on Signal Processing, 48, pp. 1184-1187
dc.descriptionTanguy, N., Vilbé, P., Calvez, L.C., Optimum choice of free parameter in orthonormal approximations (1995) IEEE Transactions on Automatic Control, 40, pp. 1811-1813
dc.descriptionWahlberg, B., System identification using Laguerre models (1991) IEEE Transactions on Automatic Control, 36 (5), pp. 551-562
dc.descriptionWahlberg, B., System identification using Kautz models (1994) IEEE Transactions on Automatic Control, 39 (6), pp. 1276-1282
dc.descriptionWahlberg, B., Ljung, L., Hard frequency-domain model error bounds from least-squares like identification techniques (1992) IEEE Transactions on Automatic Control, 37 (7), pp. 900-912
dc.descriptionWahlberg, B., Mäkilä, P.M., Approximation of stable linear dynamical systems using Laguerre and Kautz functions (1996) Automatica, 32 (5), pp. 693-708
dc.descriptionWiener, N., (1958) Nonlinear Problems in Random Theory, , New York: Wiley
dc.descriptionZervos, C.C., Dumont, G.A., Deterministic adaptive control based on Laguerre series representation (1988) International Journal of Control, 48 (6), pp. 2333-2359
dc.languageen
dc.publisher
dc.relationAutomatica
dc.rightsfechado
dc.sourceScopus
dc.titleOptimal Expansions Of Discrete-time Volterra Models Using Laguerre Functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución