Actas de congresos
Robust Stability Of Linear Systems Through Unequal Linear Matrices [estabilidade Robusta De Sistemas Lineares Através De Desigualdades Matriciais Lineares]
Registro en:
Controle And Automacao. , v. 15, n. 1, p. 24 - 40, 2004.
1031759
2-s2.0-2542481004
Autor
Leite V.J.S.
De Oliveira P.J.
Ramos D.C.W.
Montagner V.F.
Oliveira R.C.L.F.
Peres P.L.D.
Institución
Resumen
Sufficient conditions for the analysis of stability of linear systems with polytopic uncertainties are presented in this paper. The robust stability is guaranteed by the existence of a parameter dependent Lypaunov function obtained from the feasibility test of a set of linear matrix inequalities (LMIs) formulated at the vertices of the uncertainty polytope. Three conditions are presented, and the results are also compared with the analysis based on quadratic stability (same Lyapunov function for the entire set of uncertainties), for continuous as well as discrete-time systems. The first condition exploits the use of some extra variables (matrices) in the LMIs, and the second one uses a larger number of LMIs. These two conditions have recently appeared in the literature and are less conservative than quadratic stability. The third condition, proposed in this paper, combines the two ideas, yielding better results, and contains the previous conditions as particular cases. Several examples are presented to illustrate the numerical performance of the LMI conditions in terms of efficiency and computational complexity. 15 1 24 40 Albert, A., Conditions for positive and nonnegative definiteness in terms of pseudoinverses (1969) SIAM Journal on Applied Mathematics, 17 (2), pp. 434-440 Barmish, B.R., Necessary and sufficient conditions for quadratic stabilizability of an uncertain system (1985) Journal of Optimization Theory and Applications, 46 (4), pp. 399-408 Bernussou, J., Peres, P.L.D., Geromel, J.C., A linear programming oriented procedure for quadratic stabilization of uncertain systems (1989) Systems & Control Letters, 13 (1), pp. 65-72 Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear matrix inequalities in system and control theory (1994) SIAM Studies in Applied Mathematics, , Philadelphia, PA De Oliveira, M.C., Bernussou, J., Geromel, J.C., A new discrete-time robust stability condition (1999) Systems & Control Letters, 37 (4), pp. 261-265 De Oliveira, M.C., Geromel, J.C., Hsu, L., LMI characterization of structural and robust stability: The discrete-time case (1999) Linear Algebra and Its Applications, 296 (1-3), pp. 27-38 De Oliveira, P.J., Oliveira, R.C.L.F., Leite, V.J.S., Montagner, V.F., Peres, P.L.D., Estabilidade robusta de sistemas discretos no tempo através de desigualdades matriciais lineares (2002) XIV Congresso Brasileiro de Automática, pp. 2884-2889. , Natal, RN De Souza, C.E., Trofino, A., A linear matrix inequality approach to the design of robust ℋ2 filters (2000) Advances in Linear Matrix Inequality Methods in Control, pp. 175-185. , L. El Ghaoui e S. I. Niculescu (eds), Advances in Design and Control, SIAM, Philadelphia, PA Feron, E., Apkarian, P., Gahinet, P., Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions (1996) IEEE Transactions on Automatic Control, 41 (7), pp. 1041-1046 Gahinet, P., Apkarian, P., Chilali, M., Affine parameter-dependent Lyapunov functions and real parametric uncertainty (1996) IEEE Transactions on Automatic Control, 41 (3), pp. 436-442 Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M., (1995) LMI Control Toolbox for Use with Matlab, , User's Guide, The Math Works Inc., Natick, MA Geromel, J.C., Optimal linear filtering under parameter uncertainty (1999) IEEE Transactions on Signal Processing, 47 (1), pp. 168-175 Geromel, J.C., Bernussou, J., Garcia, G., De Oliveira, M.C., ℋ2 and ℋ∞ robust filtering for discrete-time linear systems (1998) Proceedings of the 37th IEEE Conference on Decision and Control, 1, pp. 632-637. , Tampa, FL Geromel, J.C., De Oliveira, M.C., Hsu, L., LMI characterization of structural and robust stability (1998) Linear Algebra and Its Applications, 285 (1-3), pp. 69-80 Geromel, J.C., Peres, P.L.D., Bernussou, J., On a convex parameter space method for linear control design of uncertain systems (1991) SIAM Journal on Control and Optimization, 29 (2), pp. 381-402 Geromel, J.C., Peres, P.L.D., Souza, S.R., A convex approach to the mixed ℋ2/ℋ∞ control problem for discrete-time uncertain systems (1995) SIAM Journal on Control and Optimization, 33 (6), pp. 1816-1833 Kaminer, I., Khargonekar, P.P., Rotea, M.A., Mixed ℋ2/ℋ∞ control for discrete-time systems via convex optimization (1993) Automatica, 29 (1), pp. 57-70 Khargonekar, P.P., Rotea, M.A., Mixed ℋ2-ℋ∞ control: A convex optimization approach (1991) IEEE Transactions on Automatic Control, 36 (7), pp. 824-837 Leite, V.J.S., Montagner, V.F., Ramos, D.C.W., Peres, P.L.D., Estabilidade robusta de sistemas contínuos no tempo através de desigualdades matriciais lineares (2002) XIV Congresso Brasileiro de Automática, pp. 2878-2883. , Natal, RN Mori, T., Kokame, H., A parameter-dependent Lyapunov function for a polytope of matrices (2000) IEEE Transactions on Automatic Control, 45 (8), pp. 1516-1519 Palhares, R.M., Peres, P.L.D., Robust ℋx filtering design with pole placement constraint via LMIs (1999) Journal of Optimization Theory and Applications, 102 (2), pp. 239-261 Palhares, R.M., Peres, P.L.D., Robust ℋ∞ filter design with pole constraints for discrete-time systems (2000) Journal of the Franklin Institute, 337 (6), pp. 713-723 Palhares, R.M., Peres, P.L.D., LMI approach to the mixed ℋ2/ℋ∞ filtering design for discrete-time uncertain systems (2001) IEEE Transactions on Aerospace and Electronic Systems, 37 (1), pp. 292-296 Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J., A new robust D-stability condition for real convex polytopic uncertainty (2000) Systems & Control Letters, 40 (1), pp. 21-30 Ramos, D.C.W., Peres, P.L.D., A less conservative LMI condition for the robust stability of discrete-time uncertain systems (2001) Systems & Control Letters, 435, pp. 371-378 Ramos, D.C.W., Peres, P.L.D., An LMI condition for the robust stability of uncertain continuous-time linear systems (2002) IEEE Transactions on Automatic Control, 47 (4), pp. 675-678 Rantzer, A., Johansson, M., Piecewise linear quadratic optimal control (2000) IEEE Transactions on Automatic Control, 45 (4), pp. 629-637 Trofino, A., Parameter dependent Lyapunov functions for a class of uncertain linear systems: An LMI approach (1999) Proceedings of the 38th IEEE Conference on Decision and Control, 1, pp. 2341-2346. , Phoenix, AZ Xie, L., Shishkin, S., Fu, M., Piecewise Lyapunov functions for robust stability of linear time-varying systems (1997) Systems & Control Letters, 31 (3), pp. 165-171