dc.creatorLeite V.J.S.
dc.creatorDe Oliveira P.J.
dc.creatorRamos D.C.W.
dc.creatorMontagner V.F.
dc.creatorOliveira R.C.L.F.
dc.creatorPeres P.L.D.
dc.date2004
dc.date2015-06-26T14:23:28Z
dc.date2015-11-26T14:11:57Z
dc.date2015-06-26T14:23:28Z
dc.date2015-11-26T14:11:57Z
dc.date.accessioned2018-03-28T21:12:31Z
dc.date.available2018-03-28T21:12:31Z
dc.identifier
dc.identifierControle And Automacao. , v. 15, n. 1, p. 24 - 40, 2004.
dc.identifier1031759
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-2542481004&partnerID=40&md5=5455b857382252e857bd09bcc35b6eee
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94167
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94167
dc.identifier2-s2.0-2542481004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241861
dc.descriptionSufficient conditions for the analysis of stability of linear systems with polytopic uncertainties are presented in this paper. The robust stability is guaranteed by the existence of a parameter dependent Lypaunov function obtained from the feasibility test of a set of linear matrix inequalities (LMIs) formulated at the vertices of the uncertainty polytope. Three conditions are presented, and the results are also compared with the analysis based on quadratic stability (same Lyapunov function for the entire set of uncertainties), for continuous as well as discrete-time systems. The first condition exploits the use of some extra variables (matrices) in the LMIs, and the second one uses a larger number of LMIs. These two conditions have recently appeared in the literature and are less conservative than quadratic stability. The third condition, proposed in this paper, combines the two ideas, yielding better results, and contains the previous conditions as particular cases. Several examples are presented to illustrate the numerical performance of the LMI conditions in terms of efficiency and computational complexity.
dc.description15
dc.description1
dc.description24
dc.description40
dc.descriptionAlbert, A., Conditions for positive and nonnegative definiteness in terms of pseudoinverses (1969) SIAM Journal on Applied Mathematics, 17 (2), pp. 434-440
dc.descriptionBarmish, B.R., Necessary and sufficient conditions for quadratic stabilizability of an uncertain system (1985) Journal of Optimization Theory and Applications, 46 (4), pp. 399-408
dc.descriptionBernussou, J., Peres, P.L.D., Geromel, J.C., A linear programming oriented procedure for quadratic stabilization of uncertain systems (1989) Systems & Control Letters, 13 (1), pp. 65-72
dc.descriptionBoyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear matrix inequalities in system and control theory (1994) SIAM Studies in Applied Mathematics, , Philadelphia, PA
dc.descriptionDe Oliveira, M.C., Bernussou, J., Geromel, J.C., A new discrete-time robust stability condition (1999) Systems & Control Letters, 37 (4), pp. 261-265
dc.descriptionDe Oliveira, M.C., Geromel, J.C., Hsu, L., LMI characterization of structural and robust stability: The discrete-time case (1999) Linear Algebra and Its Applications, 296 (1-3), pp. 27-38
dc.descriptionDe Oliveira, P.J., Oliveira, R.C.L.F., Leite, V.J.S., Montagner, V.F., Peres, P.L.D., Estabilidade robusta de sistemas discretos no tempo através de desigualdades matriciais lineares (2002) XIV Congresso Brasileiro de Automática, pp. 2884-2889. , Natal, RN
dc.descriptionDe Souza, C.E., Trofino, A., A linear matrix inequality approach to the design of robust ℋ2 filters (2000) Advances in Linear Matrix Inequality Methods in Control, pp. 175-185. , L. El Ghaoui e S. I. Niculescu (eds), Advances in Design and Control, SIAM, Philadelphia, PA
dc.descriptionFeron, E., Apkarian, P., Gahinet, P., Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions (1996) IEEE Transactions on Automatic Control, 41 (7), pp. 1041-1046
dc.descriptionGahinet, P., Apkarian, P., Chilali, M., Affine parameter-dependent Lyapunov functions and real parametric uncertainty (1996) IEEE Transactions on Automatic Control, 41 (3), pp. 436-442
dc.descriptionGahinet, P., Nemirovski, A., Laub, A.J., Chilali, M., (1995) LMI Control Toolbox for Use with Matlab, , User's Guide, The Math Works Inc., Natick, MA
dc.descriptionGeromel, J.C., Optimal linear filtering under parameter uncertainty (1999) IEEE Transactions on Signal Processing, 47 (1), pp. 168-175
dc.descriptionGeromel, J.C., Bernussou, J., Garcia, G., De Oliveira, M.C., ℋ2 and ℋ∞ robust filtering for discrete-time linear systems (1998) Proceedings of the 37th IEEE Conference on Decision and Control, 1, pp. 632-637. , Tampa, FL
dc.descriptionGeromel, J.C., De Oliveira, M.C., Hsu, L., LMI characterization of structural and robust stability (1998) Linear Algebra and Its Applications, 285 (1-3), pp. 69-80
dc.descriptionGeromel, J.C., Peres, P.L.D., Bernussou, J., On a convex parameter space method for linear control design of uncertain systems (1991) SIAM Journal on Control and Optimization, 29 (2), pp. 381-402
dc.descriptionGeromel, J.C., Peres, P.L.D., Souza, S.R., A convex approach to the mixed ℋ2/ℋ∞ control problem for discrete-time uncertain systems (1995) SIAM Journal on Control and Optimization, 33 (6), pp. 1816-1833
dc.descriptionKaminer, I., Khargonekar, P.P., Rotea, M.A., Mixed ℋ2/ℋ∞ control for discrete-time systems via convex optimization (1993) Automatica, 29 (1), pp. 57-70
dc.descriptionKhargonekar, P.P., Rotea, M.A., Mixed ℋ2-ℋ∞ control: A convex optimization approach (1991) IEEE Transactions on Automatic Control, 36 (7), pp. 824-837
dc.descriptionLeite, V.J.S., Montagner, V.F., Ramos, D.C.W., Peres, P.L.D., Estabilidade robusta de sistemas contínuos no tempo através de desigualdades matriciais lineares (2002) XIV Congresso Brasileiro de Automática, pp. 2878-2883. , Natal, RN
dc.descriptionMori, T., Kokame, H., A parameter-dependent Lyapunov function for a polytope of matrices (2000) IEEE Transactions on Automatic Control, 45 (8), pp. 1516-1519
dc.descriptionPalhares, R.M., Peres, P.L.D., Robust ℋx filtering design with pole placement constraint via LMIs (1999) Journal of Optimization Theory and Applications, 102 (2), pp. 239-261
dc.descriptionPalhares, R.M., Peres, P.L.D., Robust ℋ∞ filter design with pole constraints for discrete-time systems (2000) Journal of the Franklin Institute, 337 (6), pp. 713-723
dc.descriptionPalhares, R.M., Peres, P.L.D., LMI approach to the mixed ℋ2/ℋ∞ filtering design for discrete-time uncertain systems (2001) IEEE Transactions on Aerospace and Electronic Systems, 37 (1), pp. 292-296
dc.descriptionPeaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J., A new robust D-stability condition for real convex polytopic uncertainty (2000) Systems & Control Letters, 40 (1), pp. 21-30
dc.descriptionRamos, D.C.W., Peres, P.L.D., A less conservative LMI condition for the robust stability of discrete-time uncertain systems (2001) Systems & Control Letters, 435, pp. 371-378
dc.descriptionRamos, D.C.W., Peres, P.L.D., An LMI condition for the robust stability of uncertain continuous-time linear systems (2002) IEEE Transactions on Automatic Control, 47 (4), pp. 675-678
dc.descriptionRantzer, A., Johansson, M., Piecewise linear quadratic optimal control (2000) IEEE Transactions on Automatic Control, 45 (4), pp. 629-637
dc.descriptionTrofino, A., Parameter dependent Lyapunov functions for a class of uncertain linear systems: An LMI approach (1999) Proceedings of the 38th IEEE Conference on Decision and Control, 1, pp. 2341-2346. , Phoenix, AZ
dc.descriptionXie, L., Shishkin, S., Fu, M., Piecewise Lyapunov functions for robust stability of linear time-varying systems (1997) Systems & Control Letters, 31 (3), pp. 165-171
dc.languagept
dc.publisher
dc.relationControle and Automacao
dc.rightsaberto
dc.sourceScopus
dc.titleRobust Stability Of Linear Systems Through Unequal Linear Matrices [estabilidade Robusta De Sistemas Lineares Através De Desigualdades Matriciais Lineares]
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución