Artículos de revistas
Identifying Eucalyptus Expressed Sequence Tags Related To Arabidopsis Flowering-time Pathway Genes
Registro en:
Brazilian Journal Of Plant Physiology. , v. 17, n. 2, p. 255 - 266, 2005.
16770420
2-s2.0-23944501138
Autor
Dornelas M.C.
Rodriguez A.P.M.
Institución
Resumen
Flowering initiation depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. The timing of the initiation of flowering is crucial for the reproductive success of plants; therefore, they have developed conserved molecular mechanisms to integrate both environmental and endogenous cues to regulate flowering time precisely. Extensive advances in plant biology are possible now that the complete genome sequences of flowering plants is available and plant genomes can be comprehensively compared. Thus, association studies are emerging as powerful tools for the functional identification of genes involved on the regulation of flowering pathways. In this paper we report the results of our search in the Eucalyptus Genome Sequencing Project Consortium (FORESTS) database for expressed sequence tags (ESTs) showing sequence homology with known elements of flowering-time pathways. We have searched the 33,080 sequence clusters in the FORESTS database and identified Eucalyptus sequences that codify putative conserved elements of the autonomous, vernalization-, photoperiod response- and gibberellic acid-controlled flowering-time pathways. Additionally, we have characterized in silico ten putative members of the Eucalyptus homologs to the Arabidopsis CONSTANS family of transcription factors. 17 2 255 266 Adams, J., Kelso, R., Cooley, L., The kelch repeat superfamily of proteins: Propellers of cell function (2000) Trends Cell Biol., 10, pp. 17-24 Alabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., Kay, S.A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock (2001) Science, 293, pp. 880-883 Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database seach programs (1997) Nucl. Acids Res., 25, pp. 3389-3402 Araki, T., Transition from vegetative to reproductive phase (2001) Curr. Opin. Plant Biol., 4, pp. 63-68 Bagnall, D.J., King, R.W., Whitelam, G.C., Boylan, M.T., Wagner, D., Quail, P.H., Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L) Heynh. (1995) Plant Physiol., 108, pp. 1495-1503 Battey, N.H., Aspects of seasonally (2000) J. Exp. Bot., 51, pp. 1769-1780 Birve, A., Sengupta, A.K., Beuchle, D., Larsson, J., Kennison, J.A., Rasmuson-Lestander, A., Muller, J., Su(z)12 a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants (2001) Development, 128, pp. 3371-3379 Blazquez, M.A., Weigel, D., Integration of floral inductive signals in Arabidopsis (2000) Nature, 404, pp. 889-892 Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., Weigel, D., Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter (1998) Plant Cell, 10, pp. 791-800 Borden, K.L.B., RING fingers and B-boxes: Zinc-binding protein-protein interaction domains (1998) Biochem. Cell Biol., 76, pp. 351-358 Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K., Melzer, S., A MADS domain gene involved in the transition to flowering in Arabidopsis (2000) Plant J., 24, pp. 591-599 Briggs, W.R., Huala, E., Blue-light photoreceptors in higher plants (1999) Annu. Rev. Cell Dev. Biol., 15, pp. 33-62 Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S., Peacock, W.J., DNA methylation vernalization and the initiation of flowering (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 287-291 Clarke, J.H., Dean, C., Mapping FRI a locus controlling flowering time and vernalization response in Arabidopsis thaliana (1994) Mol. Gen. Genet., 242, pp. 81-89 Corbesier, L., Gadisseur, I., Silvestre, G., Jacqmard, A., Bernier, G., Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day (1996) Plant J., 9, pp. 947-952 Dornelas, M.C., Rodriguez, A.P.M., A genomic approach to elucidating grass flower development (2001) Gen. Mol. Biol., 24, pp. 69-76 Dornelas, M.C., Rodriguez, A.P.M., Identification of differentially expressed genes during reproductive development in sugarcane (Saccharum sp) by the analysis of expressed sequence tags (2004) Flowering Newsletter, 37, pp. 40-45 Dornelas, M.C., Amaral, W.A.N., Rodriguez, A.P.M., EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LFY is expressed in reproductive and vegetative tissues (2004) Braz. J. Plant Physiol., 16, pp. 105-114 Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Coupland, G., Putterill, J., GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains (1999) EMBO J., 18, pp. 4679-4688 Gendall, A.R., Levy, Y.Y., Wilson, A., Dean, C., The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis (2001) Cell, 107, pp. 525-535 Griffiths, S., Dunford, R.D., Coupland, G., Laurie, D.A., The evolution of the CONSTANS-like gene families in barley, rice and Arabidopsis (2003) Plant Physiol., 131, pp. 1855-1867 Guo, H.W., Duong, H., Ma, N., Lin, C.T., The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism (1999) Plant J., 19, pp. 279-287 Guo, H.W., Yang, W.Y., Mockler, T.C., Lin, C.T., Regulations of flowering time by Arabidopsis photoreceptors (1998) Science, 279, pp. 1360-1363 Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucl. Acids Symp. Ser., 41, pp. 95-98 Hicks, K.A., Albertson, T.M., Wagner, D.R., EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis (2001) Plant Cell, 13, pp. 1281-1292 Huq, E., Tepperman, J.M., Quail, P.H., GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 9789-9794 Izawa, T., Takahashi, Y., Yano, M., Comparative biology comes into bloom: Genomic and genetic comparison of flowering pathways in rice and Arabidopsis (2003) Curr. Opin. Plant Biol., 6, pp. 113-120 Jarillo, J.A., Capel, J., Tang, R.-H., Yang, H.-Q., Alonso, J.M., Ecker, J.R., Cashmore, A.R., An Arabidopsis circadian clock component interacts with both CRY1 and phyB (2001) Nature, 410, pp. 487-490 Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., Dean, C., Molecular analysis of FRIGIDA a major determinant of natural variation in Arabidopsis flowering time (2000) Science, 290, pp. 344-347 Johnson, E., Bradley, M., Harberd, N.P., Whitelam, G.C., Photoresponses of light-grown phyA mutants of Arabidopsis: Phytochrome A is required for the perception of day length extensions (1994) Plant Physiol., 105, pp. 141-149 Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Weigel, D., Activation tagging of the floral inducer FT (1999) Science, 286, pp. 1962-1965 Kinoshita, T., Harada, J.J., Goldberg, R.B., Fischer, R.L., Polycomb repression of flowering during early plant development (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 14156-14161 Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., Araki, T., A pair of related genes with antagonistic roles in mediating flowering signals (1999) Science, 286, pp. 1960-1962 Koornneef, M., Blankestijn-de-Vries, H., Hanhart, C., Soppe, W., Peeters, T., The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type (1994) Plant J., 6, pp. 911-919 Koornneef, M., Hanhart, C.J., Van Der Veen, J.H., A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana (1991) Mol. Gen. Genet., 229, pp. 57-66 Kreps, J.A., Simon, A.E., Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis (1997) Plant Cell, 9, pp. 297-304 Lagercrantz, U., Axelsson, T., Rapid evolution of the family of CONSTANS like genes in plants (2000) Mol. Biol. Evol., 17, pp. 1499-1507 Lee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J.H., Kim, S.-G., Lee, J.S., Lee, I., The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis (2000) Genes Dev., 14, pp. 2366-2376 Lee, I.A.B., Amasino, R., Analysis of naturally occurring late flowering in Arabidopsis thaliana (1993) Mol. Gen. Genet., 237, pp. 171-176 Lee, Y., Lloyd, A.M., Roux, S.J., Antisense expression of the CK2 alpha-subunit gene in Arabidopsis Effects on light-regulated gene expression and plant growth (1999) Plant Physiol., 119, pp. 989-1000 Levy, Y.Y., Dean, C., Control of flowering time (1998) Curr Opin Plant Biol, 1, pp. 49-54 Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., Dean, C., Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control (2002) Science, 297, pp. 243-246 Liu, X.L., Covington, M.F., Fankhauser, C., Chory, J., Wanger, D.R., ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway (2001) Plant Cell, 13, pp. 1293-1304 Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., He, S., Bryant, S.H., CDD: A Conserved Domain Database for protein classification (2005) Nucl. Acids Res., 33, pp. 192-196 McClung, C.R., Circadian rhythms in plants (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, pp. 139-162 Michaels, S.D., Amasino, R.M., Memories of winter: Vernalization and the competence to flower (2000) Plant Cell Environ., 23, pp. 1145-1153 Michaels, S.D., Amasino, R.M., Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization (2001) Plant Cell, 13, pp. 935-941 Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.-R., Carré, I.A., Coupland, G., LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis (2002) Dev. Cell, 2, pp. 629-641 Moncur, M.W., Hasan, O., Floral induction in Eucalyptus nitens (1994) Tree Physiol., 14, pp. 1303-1312 Mouradov, A., Cremer, F., Coupland, G., Control of flowering time: Interacting pathways as a basis for diversity (2002) Plant Cell, (SUPPL.), pp. S11-S130 Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., Bartel, B., FKF1 a clock-controlled gene that regulates the transition to flowering in Arabidopsis (2000) Cell, 101, pp. 331-340 Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B., Fischer, R.L., Mutations in FIE a WD polycomb group gene allow endosperm development without fertilization (1999) Plant Cell, 11, pp. 407-415 Onouchi, H., Igeno, M.I., Perilleux, C., Graves, K., Coupland, G., Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes (2000) Plant Cell, 12, pp. 885-900 Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Nam, H.G., Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene (1999) Science, 285, pp. 1579-1582 Peña, L., Martin-Trillo, M., Juarez, J., Pina, J.A., Navarro, L., Martinez-Zapater, J.M., Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time (2001) Nature Biotechnol., 19, pp. 263-267 Pineiro, M., Coupland, G., The control of flowering time and floral identity in Arabidopsis (1998) Plant Physiol., 117, pp. 1-8 Putterill, J., Robson, F., Lee, K., Simon, R., Coupland, G., The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors (1995) Cell, 80, pp. 847-857 Reeves, P.H., Coupland, G., Response of plant development to environment: Control of flowering by daylength and temperature (2000) Curr. Opin. Plant Biol., 3, pp. 37-42 Robson, F., Costa, M.M.R., Hepworth, S., Vizir, I., Pineiro, M., Reeves, P.H., Putterill, J., Coupland, G., Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants (2001) Plant J., 28, pp. 619-631 Roenneberg, T., Merrow, M., Circadian clocks: Omnes viae Romam ducunt (2000) Curr Biol, 10, pp. R742-R745 Saitou, N., Nei, M., The neighbour joining method: A new method for reconstructing phylogenetic trees (1987) Molec. Biol. Evol., 4, pp. 406-425 Samach, A., Coupland, G., Time measurement and the control of flowering in plants (2000) Bioessays, 22, pp. 38-47 Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., Coupland, G., Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis (2000) Science, 288, pp. 1613-1616 Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., Coupland, G., The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering (1998) Cell, 93, pp. 1219-1229 Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., Dennis, E.S., The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation (1999) Plant Cell, 11, pp. 445-458 Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., Dennis, E.S., The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC) (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 3753-3758 Simpson, G.G., Dean, C., Arabidopsis the Rosetta stone of flowering time? (2002) Science, 296, pp. 285-289 Somers, D.E., Schultz, T.F., Milnamow, M., Kay, S.A., ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis (2000) Cell, 101, pp. 319-329 Somers, D.E., Webb, A.A.R., Pearson, M., Kay, S.A., The short-period mutant toc1-1 alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana (1998) Development, 125, pp. 485-494 Southerton, S.G., Strauss, S.H., Olive, M.R., Harcourt, R.L., Decroocq, V., Zhu, X., Llewellyn, D.J., Dennis, E.S., Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY (1998) Plant Mol. Biol., 37, pp. 897-910 Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kay, S.A., Cloning of the Arabidopsis clock gene TOC1 an autoregulatory response regulator homolog (2000) Science, 289, pp. 768-771 Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis (2001) Nature, 410, pp. 1116-1120 Sung, Z.R., Belachew, A., Shunong, B., Bertrand-Garcia, R., EMF an Arabidopsis gene required for vegetative shoot development (1992) Science, 258, pp. 1645-1647 Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice (1994) Nucl. Acids Res., 22, pp. 4673-4680 Wagner, D., Sablowski, R.W.M., Meyerowitz, E.M., Transcriptional activation of APETALA1 by LEAFY (1999) Science, 285, pp. 582-584 Wang, Z.-Y., Tobin, E.M., Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression (1998) Cell, 93, pp. 1207-1217 Weigel, D., Nilsson, O., A developmental switch sufficient for flower initiation in diverse plants (1995) Nature, 377, pp. 495-500 Wilson, R.N., Heckman, J.W., Somerville, C.R., Gibberelin is required for flowering in Arabidopsis thaliana under short days (1992) Plant Physiol., 100, pp. 403-408 Yang, C.-H., Chen, L.-J., Sung, Z.R., Genetic regulation of shoot development in Arabidopsis: Role of the EMF genes (1995) Dev. Biol., 169, pp. 421-435 Yanovsky, M.J., Mazzella, M.A., Casal, J.J., A quadruple photoreceptor mutant still keeps track of time (2000) Curr. Biol., 10, pp. 1013-1015