dc.creatorDornelas M.C.
dc.creatorRodriguez A.P.M.
dc.date2005
dc.date2015-06-26T14:09:10Z
dc.date2015-11-26T14:08:46Z
dc.date2015-06-26T14:09:10Z
dc.date2015-11-26T14:08:46Z
dc.date.accessioned2018-03-28T21:09:20Z
dc.date.available2018-03-28T21:09:20Z
dc.identifier
dc.identifierBrazilian Journal Of Plant Physiology. , v. 17, n. 2, p. 255 - 266, 2005.
dc.identifier16770420
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-23944501138&partnerID=40&md5=0279facc5d4cf97a5c6925ed4bd3149e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93726
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93726
dc.identifier2-s2.0-23944501138
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241080
dc.descriptionFlowering initiation depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. The timing of the initiation of flowering is crucial for the reproductive success of plants; therefore, they have developed conserved molecular mechanisms to integrate both environmental and endogenous cues to regulate flowering time precisely. Extensive advances in plant biology are possible now that the complete genome sequences of flowering plants is available and plant genomes can be comprehensively compared. Thus, association studies are emerging as powerful tools for the functional identification of genes involved on the regulation of flowering pathways. In this paper we report the results of our search in the Eucalyptus Genome Sequencing Project Consortium (FORESTS) database for expressed sequence tags (ESTs) showing sequence homology with known elements of flowering-time pathways. We have searched the 33,080 sequence clusters in the FORESTS database and identified Eucalyptus sequences that codify putative conserved elements of the autonomous, vernalization-, photoperiod response- and gibberellic acid-controlled flowering-time pathways. Additionally, we have characterized in silico ten putative members of the Eucalyptus homologs to the Arabidopsis CONSTANS family of transcription factors.
dc.description17
dc.description2
dc.description255
dc.description266
dc.descriptionAdams, J., Kelso, R., Cooley, L., The kelch repeat superfamily of proteins: Propellers of cell function (2000) Trends Cell Biol., 10, pp. 17-24
dc.descriptionAlabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., Kay, S.A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock (2001) Science, 293, pp. 880-883
dc.descriptionAltschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database seach programs (1997) Nucl. Acids Res., 25, pp. 3389-3402
dc.descriptionAraki, T., Transition from vegetative to reproductive phase (2001) Curr. Opin. Plant Biol., 4, pp. 63-68
dc.descriptionBagnall, D.J., King, R.W., Whitelam, G.C., Boylan, M.T., Wagner, D., Quail, P.H., Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L) Heynh. (1995) Plant Physiol., 108, pp. 1495-1503
dc.descriptionBattey, N.H., Aspects of seasonally (2000) J. Exp. Bot., 51, pp. 1769-1780
dc.descriptionBirve, A., Sengupta, A.K., Beuchle, D., Larsson, J., Kennison, J.A., Rasmuson-Lestander, A., Muller, J., Su(z)12 a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants (2001) Development, 128, pp. 3371-3379
dc.descriptionBlazquez, M.A., Weigel, D., Integration of floral inductive signals in Arabidopsis (2000) Nature, 404, pp. 889-892
dc.descriptionBlazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., Weigel, D., Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter (1998) Plant Cell, 10, pp. 791-800
dc.descriptionBorden, K.L.B., RING fingers and B-boxes: Zinc-binding protein-protein interaction domains (1998) Biochem. Cell Biol., 76, pp. 351-358
dc.descriptionBorner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K., Melzer, S., A MADS domain gene involved in the transition to flowering in Arabidopsis (2000) Plant J., 24, pp. 591-599
dc.descriptionBriggs, W.R., Huala, E., Blue-light photoreceptors in higher plants (1999) Annu. Rev. Cell Dev. Biol., 15, pp. 33-62
dc.descriptionBurn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S., Peacock, W.J., DNA methylation vernalization and the initiation of flowering (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 287-291
dc.descriptionClarke, J.H., Dean, C., Mapping FRI a locus controlling flowering time and vernalization response in Arabidopsis thaliana (1994) Mol. Gen. Genet., 242, pp. 81-89
dc.descriptionCorbesier, L., Gadisseur, I., Silvestre, G., Jacqmard, A., Bernier, G., Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day (1996) Plant J., 9, pp. 947-952
dc.descriptionDornelas, M.C., Rodriguez, A.P.M., A genomic approach to elucidating grass flower development (2001) Gen. Mol. Biol., 24, pp. 69-76
dc.descriptionDornelas, M.C., Rodriguez, A.P.M., Identification of differentially expressed genes during reproductive development in sugarcane (Saccharum sp) by the analysis of expressed sequence tags (2004) Flowering Newsletter, 37, pp. 40-45
dc.descriptionDornelas, M.C., Amaral, W.A.N., Rodriguez, A.P.M., EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LFY is expressed in reproductive and vegetative tissues (2004) Braz. J. Plant Physiol., 16, pp. 105-114
dc.descriptionFowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Coupland, G., Putterill, J., GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains (1999) EMBO J., 18, pp. 4679-4688
dc.descriptionGendall, A.R., Levy, Y.Y., Wilson, A., Dean, C., The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis (2001) Cell, 107, pp. 525-535
dc.descriptionGriffiths, S., Dunford, R.D., Coupland, G., Laurie, D.A., The evolution of the CONSTANS-like gene families in barley, rice and Arabidopsis (2003) Plant Physiol., 131, pp. 1855-1867
dc.descriptionGuo, H.W., Duong, H., Ma, N., Lin, C.T., The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism (1999) Plant J., 19, pp. 279-287
dc.descriptionGuo, H.W., Yang, W.Y., Mockler, T.C., Lin, C.T., Regulations of flowering time by Arabidopsis photoreceptors (1998) Science, 279, pp. 1360-1363
dc.descriptionHall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucl. Acids Symp. Ser., 41, pp. 95-98
dc.descriptionHicks, K.A., Albertson, T.M., Wagner, D.R., EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis (2001) Plant Cell, 13, pp. 1281-1292
dc.descriptionHuq, E., Tepperman, J.M., Quail, P.H., GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 9789-9794
dc.descriptionIzawa, T., Takahashi, Y., Yano, M., Comparative biology comes into bloom: Genomic and genetic comparison of flowering pathways in rice and Arabidopsis (2003) Curr. Opin. Plant Biol., 6, pp. 113-120
dc.descriptionJarillo, J.A., Capel, J., Tang, R.-H., Yang, H.-Q., Alonso, J.M., Ecker, J.R., Cashmore, A.R., An Arabidopsis circadian clock component interacts with both CRY1 and phyB (2001) Nature, 410, pp. 487-490
dc.descriptionJohanson, U., West, J., Lister, C., Michaels, S., Amasino, R., Dean, C., Molecular analysis of FRIGIDA a major determinant of natural variation in Arabidopsis flowering time (2000) Science, 290, pp. 344-347
dc.descriptionJohnson, E., Bradley, M., Harberd, N.P., Whitelam, G.C., Photoresponses of light-grown phyA mutants of Arabidopsis: Phytochrome A is required for the perception of day length extensions (1994) Plant Physiol., 105, pp. 141-149
dc.descriptionKardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Weigel, D., Activation tagging of the floral inducer FT (1999) Science, 286, pp. 1962-1965
dc.descriptionKinoshita, T., Harada, J.J., Goldberg, R.B., Fischer, R.L., Polycomb repression of flowering during early plant development (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 14156-14161
dc.descriptionKobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., Araki, T., A pair of related genes with antagonistic roles in mediating flowering signals (1999) Science, 286, pp. 1960-1962
dc.descriptionKoornneef, M., Blankestijn-de-Vries, H., Hanhart, C., Soppe, W., Peeters, T., The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type (1994) Plant J., 6, pp. 911-919
dc.descriptionKoornneef, M., Hanhart, C.J., Van Der Veen, J.H., A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana (1991) Mol. Gen. Genet., 229, pp. 57-66
dc.descriptionKreps, J.A., Simon, A.E., Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis (1997) Plant Cell, 9, pp. 297-304
dc.descriptionLagercrantz, U., Axelsson, T., Rapid evolution of the family of CONSTANS like genes in plants (2000) Mol. Biol. Evol., 17, pp. 1499-1507
dc.descriptionLee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J.H., Kim, S.-G., Lee, J.S., Lee, I., The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis (2000) Genes Dev., 14, pp. 2366-2376
dc.descriptionLee, I.A.B., Amasino, R., Analysis of naturally occurring late flowering in Arabidopsis thaliana (1993) Mol. Gen. Genet., 237, pp. 171-176
dc.descriptionLee, Y., Lloyd, A.M., Roux, S.J., Antisense expression of the CK2 alpha-subunit gene in Arabidopsis Effects on light-regulated gene expression and plant growth (1999) Plant Physiol., 119, pp. 989-1000
dc.descriptionLevy, Y.Y., Dean, C., Control of flowering time (1998) Curr Opin Plant Biol, 1, pp. 49-54
dc.descriptionLevy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., Dean, C., Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control (2002) Science, 297, pp. 243-246
dc.descriptionLiu, X.L., Covington, M.F., Fankhauser, C., Chory, J., Wanger, D.R., ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway (2001) Plant Cell, 13, pp. 1293-1304
dc.descriptionMarchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., He, S., Bryant, S.H., CDD: A Conserved Domain Database for protein classification (2005) Nucl. Acids Res., 33, pp. 192-196
dc.descriptionMcClung, C.R., Circadian rhythms in plants (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, pp. 139-162
dc.descriptionMichaels, S.D., Amasino, R.M., Memories of winter: Vernalization and the competence to flower (2000) Plant Cell Environ., 23, pp. 1145-1153
dc.descriptionMichaels, S.D., Amasino, R.M., Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization (2001) Plant Cell, 13, pp. 935-941
dc.descriptionMizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.-R., Carré, I.A., Coupland, G., LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis (2002) Dev. Cell, 2, pp. 629-641
dc.descriptionMoncur, M.W., Hasan, O., Floral induction in Eucalyptus nitens (1994) Tree Physiol., 14, pp. 1303-1312
dc.descriptionMouradov, A., Cremer, F., Coupland, G., Control of flowering time: Interacting pathways as a basis for diversity (2002) Plant Cell, (SUPPL.), pp. S11-S130
dc.descriptionNelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., Bartel, B., FKF1 a clock-controlled gene that regulates the transition to flowering in Arabidopsis (2000) Cell, 101, pp. 331-340
dc.descriptionOhad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B., Fischer, R.L., Mutations in FIE a WD polycomb group gene allow endosperm development without fertilization (1999) Plant Cell, 11, pp. 407-415
dc.descriptionOnouchi, H., Igeno, M.I., Perilleux, C., Graves, K., Coupland, G., Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes (2000) Plant Cell, 12, pp. 885-900
dc.descriptionPark, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Nam, H.G., Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene (1999) Science, 285, pp. 1579-1582
dc.descriptionPeña, L., Martin-Trillo, M., Juarez, J., Pina, J.A., Navarro, L., Martinez-Zapater, J.M., Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time (2001) Nature Biotechnol., 19, pp. 263-267
dc.descriptionPineiro, M., Coupland, G., The control of flowering time and floral identity in Arabidopsis (1998) Plant Physiol., 117, pp. 1-8
dc.descriptionPutterill, J., Robson, F., Lee, K., Simon, R., Coupland, G., The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors (1995) Cell, 80, pp. 847-857
dc.descriptionReeves, P.H., Coupland, G., Response of plant development to environment: Control of flowering by daylength and temperature (2000) Curr. Opin. Plant Biol., 3, pp. 37-42
dc.descriptionRobson, F., Costa, M.M.R., Hepworth, S., Vizir, I., Pineiro, M., Reeves, P.H., Putterill, J., Coupland, G., Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants (2001) Plant J., 28, pp. 619-631
dc.descriptionRoenneberg, T., Merrow, M., Circadian clocks: Omnes viae Romam ducunt (2000) Curr Biol, 10, pp. R742-R745
dc.descriptionSaitou, N., Nei, M., The neighbour joining method: A new method for reconstructing phylogenetic trees (1987) Molec. Biol. Evol., 4, pp. 406-425
dc.descriptionSamach, A., Coupland, G., Time measurement and the control of flowering in plants (2000) Bioessays, 22, pp. 38-47
dc.descriptionSamach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., Coupland, G., Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis (2000) Science, 288, pp. 1613-1616
dc.descriptionSchaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., Coupland, G., The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering (1998) Cell, 93, pp. 1219-1229
dc.descriptionSheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., Dennis, E.S., The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation (1999) Plant Cell, 11, pp. 445-458
dc.descriptionSheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., Dennis, E.S., The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC) (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 3753-3758
dc.descriptionSimpson, G.G., Dean, C., Arabidopsis the Rosetta stone of flowering time? (2002) Science, 296, pp. 285-289
dc.descriptionSomers, D.E., Schultz, T.F., Milnamow, M., Kay, S.A., ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis (2000) Cell, 101, pp. 319-329
dc.descriptionSomers, D.E., Webb, A.A.R., Pearson, M., Kay, S.A., The short-period mutant toc1-1 alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana (1998) Development, 125, pp. 485-494
dc.descriptionSoutherton, S.G., Strauss, S.H., Olive, M.R., Harcourt, R.L., Decroocq, V., Zhu, X., Llewellyn, D.J., Dennis, E.S., Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY (1998) Plant Mol. Biol., 37, pp. 897-910
dc.descriptionStrayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kay, S.A., Cloning of the Arabidopsis clock gene TOC1 an autoregulatory response regulator homolog (2000) Science, 289, pp. 768-771
dc.descriptionSuarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis (2001) Nature, 410, pp. 1116-1120
dc.descriptionSung, Z.R., Belachew, A., Shunong, B., Bertrand-Garcia, R., EMF an Arabidopsis gene required for vegetative shoot development (1992) Science, 258, pp. 1645-1647
dc.descriptionThompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice (1994) Nucl. Acids Res., 22, pp. 4673-4680
dc.descriptionWagner, D., Sablowski, R.W.M., Meyerowitz, E.M., Transcriptional activation of APETALA1 by LEAFY (1999) Science, 285, pp. 582-584
dc.descriptionWang, Z.-Y., Tobin, E.M., Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression (1998) Cell, 93, pp. 1207-1217
dc.descriptionWeigel, D., Nilsson, O., A developmental switch sufficient for flower initiation in diverse plants (1995) Nature, 377, pp. 495-500
dc.descriptionWilson, R.N., Heckman, J.W., Somerville, C.R., Gibberelin is required for flowering in Arabidopsis thaliana under short days (1992) Plant Physiol., 100, pp. 403-408
dc.descriptionYang, C.-H., Chen, L.-J., Sung, Z.R., Genetic regulation of shoot development in Arabidopsis: Role of the EMF genes (1995) Dev. Biol., 169, pp. 421-435
dc.descriptionYanovsky, M.J., Mazzella, M.A., Casal, J.J., A quadruple photoreceptor mutant still keeps track of time (2000) Curr. Biol., 10, pp. 1013-1015
dc.languageen
dc.publisher
dc.relationBrazilian Journal of Plant Physiology
dc.rightsaberto
dc.sourceScopus
dc.titleIdentifying Eucalyptus Expressed Sequence Tags Related To Arabidopsis Flowering-time Pathway Genes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución