dc.creatorGatica, Gabriel
dc.creatorGatica, Luis
dc.creatorStephan, Ernst
dc.date2015-12-11T20:18:51Z
dc.date2015-12-11T20:18:51Z
dc.date2003
dc.identifierMathematical methods in the applied sciences 26
dc.identifier1099-1476
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/793
dc.descriptionArtículo de publicación ISI
dc.descriptionIn this paper, we combine the usual infinite element method with a Dirichlet-to-Neumann (DtN) mapping, derived in terms of an infinite Fourier series, to study the solvability and Galerkin approximations of an exterior transmission problem arising in non-linear incompressible 2d-elasticity. We show that the variational formulation can be written in a Stokes-type mixed form with a linear constraint and a non-linear main operator. Then, we provide the uniqueness of solution for the continuous and discrete formulations, and derive a Cea-type estimate for the associated error. In particular, our error analysis considers the practical case in which the DtN mapping is approximated by the corresponding infinite Fourier series. Finally, a reliable a posteriori error estimate, well suited for adaptive computations, is also given. Copyright ?2003 John Wiley & Sons, Ltd
dc.languageen
dc.publisherWiley Online Library
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttps://goo.gl/r94hy0
dc.subjectFinite element method
dc.subjectDirichlet-to-Neumann mapping
dc.subjectIncompressible elasticity
dc.titleA FEM–DtN formulation for a non-linear exterior problem in incompressible elasticity
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución