dc.creatorBarrios Faúndez, Tomás
dc.creatorBarrenechea, Gabriel
dc.creatorWachtel, Andreas
dc.date2015-12-02T15:26:41Z
dc.date2015-12-02T15:26:41Z
dc.date2015
dc.identifier1126-5434
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/673
dc.descriptionArtículo de publicación ISI
dc.descriptionThis work presents new stabilised finite element methods for a bending moments formulation of the Reissner-Mindlin plate model. The introduction of the bending moment as an extra unknown leads to a new weak formulation, where the symmetry of this variable is imposed strongly in the space. This weak problem is proved to be well-posed, and stabilised Galerkin schemes for its discretisation are presented and analysed. The finite element methods are such that the bending moment tensor is sought in a finite element space constituted of piecewise linear continuos and symmetric tensors. Optimal error estimates are proved, and these findings are illustrated by representative numerical experiments.
dc.languageen
dc.publisherCalcolo 52
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttp://goo.gl/CMG91e
dc.subjectReissner-Mindlin plate
dc.subjectStabilised finite element method
dc.subjectSymmetric formulation
dc.subjectSymmetric tensor
dc.titleStabilised finite element methods for a bending moment formulation of the Reissner-Mindlin plate model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución