dc.creator | Bustinza, Rommel | |
dc.creator | Barrios Faúndez, Tomás | |
dc.date | 2015-11-27T15:42:50Z | |
dc.date | 2015-11-27T15:42:50Z | |
dc.date | 2007 | |
dc.identifier | Comptes Rendus Mathematique 344 | |
dc.identifier | 1631-073X | |
dc.identifier | http://repositoriodigital.ucsc.cl/handle/25022009/599 | |
dc.description | Artículo de publicación ISI | |
dc.description | In this work we propose an augmented discontinuous Galerkin method for elliptic linear problems in the plane with mixed boundary conditions. Our approach introduce Galerkin least-squares terms, arising from constitutive and equilibrium equations, which allow us to look for the flux unknown in the local Raviart-Thomas space. The unique solvability is established avoiding the introduction of lifting
operators and we derive a C ́ea estimate, which let us conclude that the rate of convergence of error, measured in an appropriate norm, is optimal respect to the h−version. We emphasize that for practical computations, this method reduces the degrees of freedom, with respect to the classical discontinuous Galerkin method. | |
dc.language | en | |
dc.publisher | Scielo | |
dc.rights | Atribucion-Nocomercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.source | http://goo.gl/ebY8DY | |
dc.subject | Discontinuous Galerkin | |
dc.subject | Augmented formulation | |
dc.subject | A-priori error estimates | |
dc.title | An augmented discontinuous Galerkin method for elliptic problems | |
dc.type | Artículos de revistas | |