dc.creatorBarrios Faúndez, Tomás
dc.creatorGatica, Gabriel N.
dc.creatorPaiva, Freddy
dc.date2015-11-27T15:38:43Z
dc.date2015-11-27T15:38:43Z
dc.date2007
dc.identifierNumerical Functional Analysis and Optimization 28
dc.identifier0163-0563
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/598
dc.descriptionArtículo de publicación ISI
dc.descriptionWe use Galerkin least-squares terms and biorthogonal wavelet bases to develop a new stabilized dual -mixed finite element method for second order el liptic equations in divergence form with Neumann boundary conditions. The approach introduces the trace of the solution on the boundary as a new unknown that acts also as a Lagrange multiplier. We show that the resulting stabilized dual-mixed variational formulation and the associated discrete scheme defined with Raviart-Thomas spaces are well posed, and derive the usual a-priori error estimates and the corresponding rate of convergence. Furthermore, a reliable and efficient residual based a-posteriori error estimator and a reliable and quasi-efficient one are provided
dc.languageen
dc.publisherScielo
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttp://goo.gl/WwsgJ9
dc.subjectMixed finite elements
dc.subjectBiorthogonal wavelet bases
dc.subjectRaviart -Thomas spaces
dc.subjectA-posteriori error estimators
dc.titleA-priori and a-posteriori error analysis of a wavelet-base d stabilization for the mixed finite element method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución