dc.creator | Barrios Faúndez, Tomás | |
dc.creator | Gatica, Gabriel N. | |
dc.creator | Paiva, Freddy | |
dc.date | 2015-11-27T15:38:43Z | |
dc.date | 2015-11-27T15:38:43Z | |
dc.date | 2007 | |
dc.identifier | Numerical Functional Analysis and Optimization 28 | |
dc.identifier | 0163-0563 | |
dc.identifier | http://repositoriodigital.ucsc.cl/handle/25022009/598 | |
dc.description | Artículo de publicación ISI | |
dc.description | We use Galerkin least-squares terms and biorthogonal wavelet bases to develop a new stabilized dual -mixed finite element method for second order el liptic equations in divergence form with Neumann boundary conditions. The approach introduces the trace of the solution on the boundary as a new unknown that acts also as a Lagrange multiplier. We show that the resulting stabilized dual-mixed variational formulation and the associated discrete scheme defined with Raviart-Thomas spaces are well posed, and derive the usual a-priori error estimates and the corresponding rate of convergence. Furthermore, a reliable and efficient residual based a-posteriori error estimator and a reliable and quasi-efficient one are provided | |
dc.language | en | |
dc.publisher | Scielo | |
dc.rights | Atribucion-Nocomercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.source | http://goo.gl/WwsgJ9 | |
dc.subject | Mixed finite elements | |
dc.subject | Biorthogonal wavelet bases | |
dc.subject | Raviart -Thomas spaces | |
dc.subject | A-posteriori error estimators | |
dc.title | A-priori and a-posteriori error analysis of a wavelet-base d stabilization for the mixed finite element method | |
dc.type | Artículos de revistas | |