dc.creatorMardešić, Pavao
dc.creatorSaavedra, Mariana
dc.creatorUribe, Marco
dc.date2015-11-24T20:35:46Z
dc.date2015-11-24T20:35:46Z
dc.date2012
dc.identifierBulletin des Sciences Mathématiques 136
dc.identifier0007-4497
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/508
dc.descriptionArtículo de publicación ISI
dc.descriptionIn this paper we investigate planar polynomial multi-parameter deformations of Hamiltonian vector fields. We study first all coefficients in the development of the displacement function on a transversal to the period annulus. We show that they can be expressed through iterated integrals, whose length is bounded by the degree of the monomials. A second result expresses the principal terms in the division of the displacement function in the Bautin ideal. More precisely, the principal terms in its division in a reduced basis of the Bautin ideal are given by iterated integrals. Our approach is algorithmic and generalizes Françoise algorithm for one-parameter families.
dc.languageen
dc.publisherElsevier
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttp://goo.gl/CtbbnM
dc.subjectLimit cycles
dc.subjectdisplacement function
dc.subjectabelian integrals
dc.subjectiterated integrals
dc.subjectbautin ideal
dc.subjectstandard basis
dc.subjectmelnikov functions
dc.titlePrincipal part of multi-parameter displacement functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución