dc.creatorUribe, Marco
dc.date2015-11-24T15:11:45Z
dc.date2015-11-24T15:11:45Z
dc.date2009
dc.identifierJournal of Differential Equations 246
dc.identifier1608-3083
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/452
dc.descriptionArtículo de publicación ISI
dc.descriptionIn this paper, we study small polynomial perturbations of a Hamiltonian vector field with Hamiltonian F formed by a product of (d+1)(d+1) real linear functions in two variables. We assume that the corresponding lines are in a general position in R2R2. That is, the lines are distinct, non-parallel, no three of them have a common point and all critical values not corresponding to intersections of lines are distinct. We prove in this paper that the principal Poincaré–Pontryagin function Mk(t)Mk(t), associated to such a perturbation and to any family of ovals surrounding a singular point of center type, belongs to the C[t,1/t]C[t,1/t]-module generated by Abelian integrals and some integrals View the MathML sourceIi,j∗(t), with 1⩽i<j⩽d1⩽i<j⩽d defined in the paper. Moreover, View the MathML sourceIi,j∗(t) are not Abelian integrals. They are iterated integrals of length two.
dc.languageen
dc.publisherElsevier
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttp://goo.gl/77AGdh
dc.subjectAbelian integrals
dc.subjectPoincaré
dc.subjectPontryagin function
dc.subjectAsymptotic development
dc.titlePrincipal Poincaré–Pontryagin function associated to polynomial perturbations of a product of (d+1)(d+1) straight lines
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución