Artículos de revistas
Non-Random Sibling Cannibalism in the Marine Gastropod Crepidula coquimbensis
Autor
Brante, Antonio
Fernández, Miriam
Viard, Frédérique
Resumen
Artículo de publicación ISI Sibling cannibalism is commonly observed in marine species. For instance, intrabrood cannibalism has been documented in marine gastropods with direct development, suggesting a relationship between embryo behavior and the evolution of life history strategies. However, there has been little effort to document the factors driving sibling cannibalism in marine species. The kin selection theory suggests that the level of relatedness plays an important role in cannibalism patterns. We examined Crepidula coquimbensis, a marine gastropod that broods and encloses its brooded offspring in capsules. Encapsulated embryos show sibling cannibalism and high levels of intracapsular multiple paternity. Given these features, cannibalistic behavior may be driven by kin-relatedness. To test this hypothesis, we constructed artificial aggregations of
embryos to mimic three levels of relatedness: high, medium and low. For each category of aggregation, the cannibalism rate and benefits (i.e. size at hatching of surviving offspring) were estimated. In addition, at the end of embryo development, we performed parentage analyses to determine if cannibalism was associated with the relatedness between cannibal and victim embryos. Our results show that the intensity of sibling cannibalism increased in aggregations characterized by the lowest level of relatedness. There were important benefits of cannibalism in terms of hatching cannibal size. In addition, cannibalism between embryos was not random: the variation in reproductive success between males increased over the course of the experiment and the effective number of fathers decreased. Altogether, these results suggest that polyandry may play an important role in the evolution of sibling cannibalism in C. coquimbensis and that kin selection may operate during early embryonic stages in this species