dc.creator | Barrios Faúndez, Tomás | |
dc.creator | Behrens R., Edwin Marcelo | |
dc.creator | González, María | |
dc.date | 2015-11-16T18:10:17Z | |
dc.date | 2015-11-16T18:10:17Z | |
dc.date | 2014 | |
dc.identifier | Applied Numerical Mathematics 84 | |
dc.identifier | 0168-9274 | |
dc.identifier | http://repositoriodigital.ucsc.cl/handle/25022009/281 | |
dc.description | Artículo de publicación ISI | |
dc.description | We consider an augmented mixed finite element method applied to the linear elasticity problem and derive a posteriori error estimators that are simpler and easier to implement than the ones available in the literature. In the case of homogeneous Dirichlet boundary conditions, the new a posteriori error estimator is reliable and locally efficient, whereas for non-homogeneous Dirichlet boundary conditions, we derive an a posteriori error estimator that is reliable and satisfies a quasi-efficiency bound. Numerical experiments illustrate the performance of the corresponding adaptive algorithms and support the theoretical results. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.rights | Atribucion-Nocomercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.source | http://goo.gl/io0SGB | |
dc.subject | Linear elasticity | |
dc.subject | Mixed finite element method | |
dc.subject | Stabilization | |
dc.subject | A posteriori error estimates | |
dc.title | Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity | |
dc.type | Artículos de revistas | |