dc.creatorBarrios Faúndez, Tomás
dc.creatorGatica, Gabriel N.
dc.creatorGatica, Luis F.
dc.date2015-07-07T16:00:15Z
dc.date2015-07-07T16:00:15Z
dc.date2004
dc.identifierApplied Numerical Mathematics 48
dc.identifier0168-9274
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/58
dc.descriptionArtículo de publicación ISI
dc.descriptionWe apply a mixed finite element method to solve a nonlinear second order elliptic equation in divergence form with mixed boundary conditions. Our approach introduces the trace of the solution on the Neumann boundary as a further unknown that acts also as a Lagrange multiplier. We show that the resulting variational formulation and an associated discrete scheme defined with Raviart–Thomas spaces are well posed, and derive the usual a priori estimates and the corresponding rate of convergence. In addition, we develop a Bank–Weiser type a posteriori error analysis and provide an implicit reliable and quasi-efficient estimate, and a fully explicit reliable one. Several numerical results illustrate the suitability of the explicit a posteriori estimate for the adaptive computation of the discrete solutions.
dc.languageen
dc.publisherElsevier
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourcehttp://goo.gl/S88SpR
dc.subjectMixed boundary conditions
dc.subjectMixed finite elements
dc.subjectRaviart–Thomas spaces
dc.subjectLocal problems
dc.titleOn the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución