Buscar
Mostrando ítems 1-10 de 105
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
(Universidad Católica del Norte, Departamento de Matemáticas, 2008)
Properties of the FM: Series with Zero Convergence RADII
(Springer, 1990)
An Improved Convergence and Complexity Analysis for the Interpolatory Newton Method
(Universidad de La Frontera. Departamento de Matemática y EstadísticaUniversidade Federal de Pernambuco. Departamento de Matemática, 2010)
ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS
(Universidad Católica del Norte, Departamento de Matemáticas, 2008)
Local Convergence of the Gauss-Newton Method for Infective-Overdetermined Systems
We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information ...
Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high
We present a local convergence analysis for general multi-point-Chebyshev-Halley-type methods (MMCHTM) of high convergence order in order to approximate a solution of an equation in a Banach space setting. MMCHTM includes ...
CONVERGENCE OF NEWTON'S METHOD UNDER THE GAMMA CONDITION
(Universidad Católica del Norte, Departamento de Matemáticas, 2006)
Mixed Bohr radius in several variables
(American Mathematical Society, 2019-11)
Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex ...
Mixed Bohr radius in several variables
(American Mathematical Society, 2020-02)
Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex ...
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
(1983-12-01)
The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The ...